I described some of the most beautiful and famous mathematical theorems to Midjourney.
Here is how it imagined them:
1. "The set of real numbers is uncountably infinite."
2. The Baire category theorem: "In a complete metric space, the intersection of countably many dense sets remains dense."
3. Zorn's lemma: "A partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element."
4. The fundamental theorem of calculus: "The integral of a function's derivative recovers the original function, up to a constant."
5. The Banach-Tarski paradox: "Decomposing a solid sphere into a finite number of disjoint subsets, and then reassembling those subsets to create two spheres identical to the original one."
6. "Every vector space has a Hamel basis."
7. The fundamental theorem of algebra: "Every non - constant polynomial equation has at least one complex root."
8. Gödel's incompleteness theorems: "In any formal system of axioms, there are true statements that cannot be proven within the system and the consistency of the system cannot be proven by its own axioms."
9. The fundamental theorem of arithmetic: "Every positive integer greater than 1 can be represented uniquely as a product of prime numbers."
10. Brouwer's fixed point theorem: "In any continuous transformation of a compact, convex set in Euclidean space, there is at least one point that remains fixed."
11. The central limit theorem: "The sum of a large number of independent and identically distributed random variables will be approximately normally distributed, regardless of the original distribution."
12. The Heine-Borel theorem: "The compact subsets of Euclidean space are precisely those that are closed and bounded."
13. The singular value decomposition: "Every matrix can be decomposed into the product of a unitary, a diagonal, and another unitary matrix."
14. Bonus: "The set of real numbers is uncountably infinite, in the style of Salvador Dali."
If you have enjoyed this thread, share it with your friends and give me a follow!
This is not my typical content: I usually post math explainers here. However, this was my first time trying out Midjourney. Now, I am hooked.
(Don't worry, I won't go into "AI influencer" mode.)
"1. No income tax for women with at least two children for life."
This is an election hack, meant to buy votes for the upcoming 2026 election. Fidesz (Hungary's ruling party) is significantly down in the polls after it was leaked that a convicted p*d*ph*le accessory was given a presidential pardon.
Hell, they even let a child p*rn*gr*phy wholesaler with 96000 images on his computer walk away with ~$1500 fine. (Check en.wikipedia.org/wiki/G%C3%A1bo… if you don't believe me.)
Thus, the government is scraping to buy back the trust of families.
Even if it wasn't an empty promise, waiving the income tax is unrealistic for budgetary reasons. Hungary's economy is in the toilet.
"3. Housing incentives for young couples.
Offers a low interest loan for couples raising or committing to having one child or more."
This loan is another propaganda trick. In practice, this loan resulted in the biggest housing crisis of the country's history, because all it did was raise the price of every real estate by the amount of the loan, making real estate ownership virtually impossible for the young generation.
No matter the field, you can (almost always) find a small set of mind-numbingly simple ideas making the entire thing work.
In machine learning, the maximum likelihood estimation is one of those.
I'll start with a simple example to illustrate a simple idea.
Pick up a coin and toss it a few times, recording each outcome. The question is, once more, simple: what's the probability of heads?
We can't just immediately assume p = 1/2, that is, a fair coin.
For instance, one side of our coin can be coated with lead, resulting in a bias. To find out, let's perform some statistics! (Rolling up my sleeves, throwing down my gloves.)
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.
Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.
What is the law of large numbers, then?
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.
So, let’s stick with coin tossing. What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.
Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables.
The expected value is one of the most important concepts in probability and statistics.
For instance, all the popular loss functions in machine learning, like cross-entropy, are expected values. However, its definition is far from intuitive.
Here is what's behind the scenes.
It's better to start with an example.
So, let's play a simple game! The rules: I’ll toss a coin, and if it comes up heads, you win $1. However, if it is tails, you lose $2.
Should you even play this game with me? We’ll find out.
After n rounds, your earnings can be calculated by the number of heads times $1 minus the number of tails times $2.
If we divide total earnings by n, we obtain your average earnings per round.
The single biggest argument about statistics: is probability frequentist or Bayesian?
It's neither, and I'll explain why.
Buckle up. Deep-dive explanation incoming.
First, let's look at what is probability.
Probability quantitatively measures the likelihood of events, like rolling six with a dice. It's a number between zero and one. This is independent of interpretation; it’s a rule set in stone.
In the language of probability theory, the events are formalized by sets within an event space.
The event space is also a set, usually denoted by Ω.)