Tivadar Danka Profile picture
Apr 22, 2023 15 tweets 5 min read Read on X
I described some of the most beautiful and famous mathematical theorems to Midjourney.

Here is how it imagined them:

1. "The set of real numbers is uncountably infinite." Image
2. The Baire category theorem: "In a complete metric space, the intersection of countably many dense sets remains dense." Image
3. Zorn's lemma: "A partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element." Image
4. The fundamental theorem of calculus: "The integral of a function's derivative recovers the original function, up to a constant." Image
5. The Banach-Tarski paradox: "Decomposing a solid sphere into a finite number of disjoint subsets, and then reassembling those subsets to create two spheres identical to the original one." Image
6. "Every vector space has a Hamel basis." Image
7. The fundamental theorem of algebra: "Every non - constant polynomial equation has at least one complex root." Image
8. Gödel's incompleteness theorems: "In any formal system of axioms, there are true statements that cannot be proven within the system and the consistency of the system cannot be proven by its own axioms." Image
9. The fundamental theorem of arithmetic: "Every positive integer greater than 1 can be represented uniquely as a product of prime numbers." Image
10. Brouwer's fixed point theorem: "In any continuous transformation of a compact, convex set in Euclidean space, there is at least one point that remains fixed." Image
11. The central limit theorem: "The sum of a large number of independent and identically distributed random variables will be approximately normally distributed, regardless of the original distribution." Image
12. The Heine-Borel theorem: "The compact subsets of Euclidean space are precisely those that are closed and bounded." Image
13. The singular value decomposition: "Every matrix can be decomposed into the product of a unitary, a diagonal, and another unitary matrix." Image
14. Bonus: "The set of real numbers is uncountably infinite, in the style of Salvador Dali." Image
If you have enjoyed this thread, share it with your friends and give me a follow!

This is not my typical content: I usually post math explainers here. However, this was my first time trying out Midjourney. Now, I am hooked.

(Don't worry, I won't go into "AI influencer" mode.)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 14
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 15 tweets
Oct 13
Matrix factorizations are the pinnacle results of linear algebra.

From theory to applications, they are behind many theorems, algorithms, and methods. However, it is easy to get lost in the vast jungle of decompositions.

This is how to make sense of them. Image
We are going to study three matrix factorizations:

1. the LU decomposition,
2. the QR decomposition,
3. and the Singular Value Decomposition (SVD).

First, we'll take a look at LU.
1. The LU decomposition.

Let's start at the very beginning: linear equation systems.

Linear equations are surprisingly effective in modeling real-life phenomena: economic processes, biochemical systems, etc. Image
Read 18 tweets
Oct 11
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Oct 9
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Oct 8
Graph theory will seriously enhance your engineering skills.

Here's why you must be familiar with graphs: Image
What do the internet, your brain, the entire list of people you’ve ever met, and the city you live in have in common?

These are all radically different concepts, but they share a common trait.

They are all networks that establish relationships between objects. Image
As distinct as these things seem to be, they share common properties.

For example, the meaning of “distance” is different for

• Social networks
• Physical networks
• Information networks

But in all cases, there is a sense in which some objects are “close” or “far”. Image
Read 14 tweets
Oct 7
One of the coolest ideas in mathematics is the estimation of a shape's area by throwing random points at it.

Don't believe this works? Check out the animation below, where I show the method on the unit circle. (Whose area equals to π.)

Here is what's behind the magic:
Let's make this method precise!

The first step is to enclose our shape S in a square.

You can imagine this as a rectangular dartboard. Image
Now, we select random points from the board and count how many hit the target.

Again, you can imagine this as closing your eyes, doing a 360° spin, then launching a dart.

(Suppose that you always hit the board. Yes, I know. But in math, reality doesn't limit imagination.) Image
Read 14 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(