Tivadar Danka Profile picture
May 9, 2023 14 tweets 5 min read Read on X
Matrices + the Gram-Schmidt process = magic.

This magic is called the QR decomposition, and it's behind the famous eigenvalue-finding QR algorithm.

Here is how it works. Image
In essence, the QR decomposition factors an arbitrary matrix into the product of an orthogonal and an upper triangular matrix.

(We’ll illustrate everything with the 3 x 3 case, but everything works as is in general as well.)
First, some notations. Every matrix can be thought of as a sequence of column vectors. Trust me, this simple observation is the foundation of many-many Eureka-moments in mathematics. Image
Why is this useful? Because this way, we can look at matrix multiplication as a linear combination of the columns.

Check out how matrix-vector multiplication looks from this angle. (You can easily work this out by hand if you don’t believe me.) Image
In other words, a matrix times a vector equals a linear combination of the column vectors.

Similarly, the product of two matrices can be written in terms of linear combinations. Image
So, what’s the magic behind the QR decomposition? Simple: the vectorized version of the Gram-Schmidt process.

In a nutshell, the Gram-Schmidt process takes a linearly independent set of vectors and returns an orthonormal set that progressively generates the same subspaces. Image
(If you are not familiar with the Gram-Schmidt process, check out my earlier thread, where I explain everything in detail.)

The output vectors of the Gram-Schmidt process (qᵢ) can be written as the linear combination of the input vectors (aᵢ). Image
In other words, using the column vector form of matrix multiplication, we obtain that in fact, A factors into the product of two matrices. Image
As you can see, one term is formed from the Gram-Schmidt process’ output vectors (qᵢ), while the other one is upper triangular.

However, the matrix of qᵢ-s is also special: as its columns are orthonormal, its inverse is its transpose. Such matrices are called orthogonal. Image
Thus, any matrix can be written as the product of an orthogonal and an upper triangular one, which is the famous QR decomposition. Image
When is this useful for us? For one, it is used to iteratively find the eigenvalues of matrices. This is called the QR algorithm, one of the top 10 algorithms of the 20th century.

computer.org/csdl/magazine/…
This explanation is also a part of my Mathematics of Machine Learning book.

It's for engineers, scientists, and other curious minds. Explaining math like your teachers should have, but probably never did. Check out the early access!

tivadardanka.com/books/mathemat…
If you have enjoyed this thread, share it with your friends and follow me!

I regularly post deep-dive explainers about mathematics and machine learning such as this.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 14
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 15 tweets
Oct 13
Matrix factorizations are the pinnacle results of linear algebra.

From theory to applications, they are behind many theorems, algorithms, and methods. However, it is easy to get lost in the vast jungle of decompositions.

This is how to make sense of them. Image
We are going to study three matrix factorizations:

1. the LU decomposition,
2. the QR decomposition,
3. and the Singular Value Decomposition (SVD).

First, we'll take a look at LU.
1. The LU decomposition.

Let's start at the very beginning: linear equation systems.

Linear equations are surprisingly effective in modeling real-life phenomena: economic processes, biochemical systems, etc. Image
Read 18 tweets
Oct 11
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Oct 9
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Oct 8
Graph theory will seriously enhance your engineering skills.

Here's why you must be familiar with graphs: Image
What do the internet, your brain, the entire list of people you’ve ever met, and the city you live in have in common?

These are all radically different concepts, but they share a common trait.

They are all networks that establish relationships between objects. Image
As distinct as these things seem to be, they share common properties.

For example, the meaning of “distance” is different for

• Social networks
• Physical networks
• Information networks

But in all cases, there is a sense in which some objects are “close” or “far”. Image
Read 14 tweets
Oct 7
One of the coolest ideas in mathematics is the estimation of a shape's area by throwing random points at it.

Don't believe this works? Check out the animation below, where I show the method on the unit circle. (Whose area equals to π.)

Here is what's behind the magic:
Let's make this method precise!

The first step is to enclose our shape S in a square.

You can imagine this as a rectangular dartboard. Image
Now, we select random points from the board and count how many hit the target.

Again, you can imagine this as closing your eyes, doing a 360° spin, then launching a dart.

(Suppose that you always hit the board. Yes, I know. But in math, reality doesn't limit imagination.) Image
Read 14 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(