"Among #sequestration methods, CO2 #injection into oceans is of great primacy due to the oceans’ large sequestration ability. However, there are concerns about the changes in H2O pH as CO2 is injected into oceans."
On this point new study is conducted, details🧵⬇️
🌊 Researchers "experimentally measure the pH and solubility at #pressures up to 400 atm, #temperatures between 283 and 298 K, and different aqueous solutions in a high-pressure #autoclave reactor."
2/10
🌊The results of this research "indicated that increasing pressure increases the #solubility of CO2 in aqueous solutions, resulting in lower pH values. In contrast, increasing #salinity and #temperature lowers the solubility and, as a result, increases the system's pH."
3/10
🌊"Among all the tested aqueous solutions, the synthetic seawater mimicked that of a potential #injection point in the #SouthChina sea, exhibiting the highest salting-out effect and, therefore, the lowest solubility (i.e., the highest pH)."
4/10
"The experimental dataset of this study was fed to a machine learning algorithm, Group modeling data handling(GMDH), to develop an explainable solubility model. The model could predict the pH as a function of solubility, temp, pressure, & salinity with an accuracy of 0.87."
5/10
"The #pH values from the model were compared by the researchers of this study to those from previous studies, and a good agreement among the values was found."
6/10
Lastly, "a parameter importance analysis was conducted to shed further light on the model's performance. #Pressure and #temperature were found to be the most and the least influential factors, respectively."
7/10
"As the implantation of the technology is currently being considered in China, the current study can pave the way to better understand the interactions & mechanisms involved in conditions representative of ocean #sequestration before large-scale operations, study concluded."
8/10
Read the study entitled: "Probing Solubility and pH of CO2 in aqueous solutions: Implications for CO2 injection into oceans" here ⬇️ sciencedirect.com/science/articl…
🚨🗓We launched the first-of-its-kind Solar Geoengineering Events Calender last year, to create the go-to public resource for anyone tracking key events in #SRM. From conferences to job deadlines, we update it regularly.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (07 April - 13 April 2025):
🔗:
🧵0/21
CO280 signed a landmark 3.69 million tonne agreement with Microsoft over 12 years to scale-up carbon dioxide removal in the us pulp and paper industry.
Occidental and its subsidiary 1PointFive have secured the first-ever Class VI permits issued by the U.S. Environmental Protection Agency for sequestering CO2 from direct air capture operations.
🚨A new study from China introduced a groundbreaking system that couples liquid-based direct air capture (L-DAC) with diabatic compressed air energy storage (D-CAES). This integration captures CO₂ & stores energy at competitive costs—$0.53/kWh & $259/tCO₂. #DAC
DETAILS🧵1/8
2/ Led by researchers at East China University of Science & Technology and Tongji University, the system innovatively combines solvent-based CO₂ capture for both atmospheric and point-source emissions with energy storage.
3/ In the L-DAC component, ambient air is brought into contact with a sprayed alkaline solution.
This reaction converts CO₂ into a carbonate solution that precipitates as solid carbonates—capturing roughly 1 Mt of CO₂ and delivering 1.48 Mt dry CO₂ annually.
🚨A recent study shows that bottom trawling & dredging not only harm marine ecosystems but also reduce the ocean's capacity to sequester CO₂. By disturbing the seafloor, these activities release an extra 2-8MtCO₂/yr, threatening the progress of current #CDR efforts.🧵1/10
2/ The seafloor contributes to 40% of the ocean’s alkalinity, which plays a key role in the ocean’s capacity to sequester atmospheric CO₂. However, human activities like mobile bottom-contact fishing (e.g., trawling) and dredging are disturbing this natural carbon sink.
3/ Model simulations of this study revealed:
Bottom trawling alone reduces alkalinity production by around 130 [55–220] Gequiv/yr, while dredging contributes an additional 1.5 [0.8–2.7] Gequiv/yr. Combined, these activities lead to a net loss of 130 [56–220] Gequiv/yr.