"Utilization of biochar as a cementitious material aids in CO2 sequestration by impeding the release of C in the atm. So, a recent study reviewed the prospect of #biochar as a #cementitious material by evaluating its physical, mechanical & durability properties."🧵
This research suggested that "the physical properties of #biochar promote its use as an environmental control device."
A summary of the preparation and characterization of biochar is presented in a Fig. ⬇️ 2/7
According to the study, #pozzolan is a siliceous & aluminous material
that chemically reacts with Ca(OH)2 at room temp to form compounds having #cementitious attributes. So, some of the silica-rich biochars, like the ones derived from #RiceHusk have pozzolanic properties." 3/7
"The quantity & type of biochar used, the number of curing days & the curing technique all have an impact on the strength of biochar-infused concrete/mortar. However, investigations concluded that biochar used at lower conc. (<5 wt%) produce high-strength mortar+concrete." 4/7
This research recommended that "most of the prior work focuses on the thermal stability of #biochar. However, research on chemical & chloride attacks as well as the ageing & weathering study is scarce. Thus, future work should focus on the aforementioned gaps in knowledge."
5/7
Read the open-access study entitled: Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties" here ⬇️ aimspress.com/article/doi/10…
🚨Scientists have discovered a common soil bacterium, Bacillus megaterium, that can rapidly remove CO2 from the atmosphere by transforming it into solid limestone (calcium carbonate) within 24 hours, without creating toxic byproducts.
#CDR #CarbonMineralization
DETAILS🧵1/8
2/ Microbially induced calcite precipitation (MICP) is a technique where microbes precipitate CaCO₃, often used in eco-friendly building materials.
Most MICP uses urease to break down urea, which produces ammonium, a problematic byproduct.
3/ Bacillus megaterium is unique in a sense, it contains both urease and carbonic anhydrase (CA) enzymes. The latter allows it to fix CO₂ directly without needing urea.
But which pathway dominates? This study investigated that.
🚨Solar Geoengineering (#SRM) may seem cheap (~$18B/yr) to cool the planet, but when you factor in societal risks, political instability & sudden climate rebounds, the true cost may far exceed technical estimates from both moral & practical standpoints, says a new study.
🧵1/11
2/ SRM often gets touted as cheap even “pennies per ton” compared to the hundreds of $/ton needed for large-scale CDR.
But these estimates usually ignore the real-world costs of deploying SRM in a politically fractured and climate-damaged world.
3/ The authors outline four cost domains that traditional SRM estimates often miss:
1️⃣ Compensation for harms
2️⃣ International coordination
3️⃣ Domestic political feasibility
4⃣ Termination Shock
Each could add major financial & political costs. Details below:
SeaO2, in collaboration with TU Delft, University of Twente, and NERA secured nearly $2M for a seawater-to-e-SAF project via TKI Energy and Industry program.
🚨Global talk on #SolarGeoengineering is heating up but Latin America’s barely in the room.
A new study analyzes the #MakeSunsets case in Mexico & shows why Latin America & the Caribbean need urgent, inclusive SRM governance to prevent risks & protect real research.🧵1/8
2/ With climate risks growing, solar radiation modification is gaining attention globally.
Yet in the Latin America & the Carribean (LAC) region, it's still a marginal topic, largely absent from political agendas, public debate, and regulatory systems.
3/ In 2023, a US-based startup called Make Sunsets released SO2 over Baja California without local approval, triggering outrage & prompting Mexico to ban SRM experiments.
The incident highlighted gaps in governance and ethical oversight.