"Utilization of biochar as a cementitious material aids in CO2 sequestration by impeding the release of C in the atm. So, a recent study reviewed the prospect of #biochar as a #cementitious material by evaluating its physical, mechanical & durability properties."🧵
This research suggested that "the physical properties of #biochar promote its use as an environmental control device."
A summary of the preparation and characterization of biochar is presented in a Fig. ⬇️ 2/7
According to the study, #pozzolan is a siliceous & aluminous material
that chemically reacts with Ca(OH)2 at room temp to form compounds having #cementitious attributes. So, some of the silica-rich biochars, like the ones derived from #RiceHusk have pozzolanic properties." 3/7
"The quantity & type of biochar used, the number of curing days & the curing technique all have an impact on the strength of biochar-infused concrete/mortar. However, investigations concluded that biochar used at lower conc. (<5 wt%) produce high-strength mortar+concrete." 4/7
This research recommended that "most of the prior work focuses on the thermal stability of #biochar. However, research on chemical & chloride attacks as well as the ageing & weathering study is scarce. Thus, future work should focus on the aforementioned gaps in knowledge."
5/7
Read the open-access study entitled: Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties" here ⬇️ aimspress.com/article/doi/10…
🚨A new study has revealed for the first time that ancient carbon, stored in landscapes for thousands of years or more, can find its way back to the atmosphere as CO₂ is released from the surfaces of rivers at a rate of 1.2 billion tonnes per year.
Details🧵1/8
2/ To understand the true source of river CO₂, researchers compiled a global dataset of 1,195 radiocarbon measurements of dissolved inorganic carbon (DIC), CO₂ & CH₄ from rivers & streams.
This let them determine whether the emitted carbon was modern—or much older.
3/ Using radiocarbon signatures (¹⁴C), they found that 59% of river CO₂ emissions come from "old" C—millennia-old soil carbon & even petrogenic carbon (rock-derived, >55,000 years old)
Only ~41% came from recent biological sources like plants & microbes (decadal carbon).
🚨A NEW study explores a theoretical #geoengineering approach to combat global warming — by altering Earth’s orbit.
Simulations suggest that shifting Earth ~5.8% farther from the Sun could cool the planet by roughly 7K, effectively offsetting projected warming.
DETAILS🧵1/10
2/ Climate models suggest global temperatures could rise by 7K by 2100, driven by greenhouse gas emissions.
This study asks: what if, instead of changing the atmosphere, we changed our position in space?
Specifically: increase Earth’s orbital radius.
3/ Basically, the paper builds on the science of Milankovitch cycles which is slow, natural variations in Earth’s orbit and tilt that have triggered past ice ages.
These cycles show that even slight orbital changes can dramatically affect climate.
CALL FOR RESEARCH PRESENTATION PROPOSAL—RFF and the Harvard Solar Geoengineering Research Program invite individuals to present research at their upcoming workshop