"They naturally extract CO2 from the air and use it as feed. The more CO2 plants absorb, the less CO2 remains trapped in the atmosphere." 2/6
As plants decompose, CO2
is released back to the air
"If left alone, plants are eaten by other organisms and releasing the carbon back to the carbon cycle within months."
3/6
Anoxic conditions slow decomposition
"In anoxic waters, plants decompose extremely slowly, effectively storing the carbon much longer." 4/6
The Black Sea is the ideal location
"It is the largest anoxic body of water on earth, 2km deep, surrounded by fertile lands. The Black Sea is the optimal environment allowing affordable, environmentally safe, gigaton scale #CarbonRemoval in this decade." 5/6
🚨New research out on US public perceptions of #SolarGeoengineering:
More Americans oppose SRM research than support it, and 1 in 5 believe government-led atmospheric modification is already underway.
DETAILS🧵1/11
2/ Using 64 interviews, 10 focus groups, and a survey of 3,076 Americans, the study found strong initial rejection of solar radiation modification (#SRM) as a research priority.
Skepticism, fear of unintended consequences, and concern over “playing God” were dominant themes.
3/ Only 32.6% supported further SRM research. A notable 43.7% opposed it. For comparison, support was ~80% in similar studies from a decade ago. Enthusiastic support is now virtually nonexistent in qualitative responses.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (28 July - 03 August 2025):
🔗:
🧵0/21
Germany’s 2026 draft budget allocated €111 million for negative emissions in 2026 and a further €320 million in subsequent years. A new federal department has also been set up to focus on carbon removal.
🚨How does #SolarGeoengineering affect air pollution & public health?
New study using a cutting-edge Earth system model shows that #SAI has only modest effects on PM₂.₅ & ozone-related mortality & these impacts are mostly due to climate shifts, not aerosol deposition.🧵1/8
2/ Using CESM2-WACCM6 simulations across three scenarios (SSP2-4.5 baseline, ARISE-SAI-1.5, ARISE-SAI-1.0), the study quantifies global mortality attributable to ozone (O₃) & fine particulate matter (PM₂.₅) under future SAI deployment targeting 1.5°C and 1.0°C warming levels.
3/ Findings:
In the ARISE-SAI-1.5 scenario, maintaining global mean temp at 1.5°C above pre-industrial levels via SAI results in:
- 1.26% reduction in ozone-related mortality
- 0.86% increase in PM₂.₅-related mortality during 2060–2069, relative to SSP2-4.5.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (21-27 July 2025):
🔗:
🧵0/22
Chestnut Carbon secured up to $210M in non-recourse financing, led by J.P. Morgan for its afforestation project, marking a first-of-its-kind deal in the US carbon removal space.
🚨Scientists have discovered a common soil bacterium, Bacillus megaterium, that can rapidly remove CO2 from the atmosphere by transforming it into solid limestone (calcium carbonate) within 24 hours, without creating toxic byproducts.
#CDR #CarbonMineralization
DETAILS🧵1/8
2/ Microbially induced calcite precipitation (MICP) is a technique where microbes precipitate CaCO₃, often used in eco-friendly building materials.
Most MICP uses urease to break down urea, which produces ammonium, a problematic byproduct.
3/ Bacillus megaterium is unique in a sense, it contains both urease and carbonic anhydrase (CA) enzymes. The latter allows it to fix CO₂ directly without needing urea.
But which pathway dominates? This study investigated that.