Scientists investigate “the potential impact of #StratosphericAerosolIntervention (#SAI) on the spatiotemporal behavior of large-scale climate teleconnection patterns using simulations from the CESM1 & CESM2).”
🧵1/10
“The leading empirical orthogonal function of #SST anomalies indicates that #GHG forcing is accompanied by increases in variance across both the North Atlantic (i.e., AMO) & North Pacific (i.e., PDO) and a decrease over the tropical Pacific (i.e., ENSO),” researchers inferred. 2/
“The projected spatial patterns of SST anomaly related to ENSO show no significant change under either global warming or #StratosphericAerosolInjection (#SAI).”
4/10
“In contrast, the spatial anomaly pattern changes pertaining to the AMO (i.e., in the North Atlantic) and PDO (i.e., in the North Pacific) under global warming are effectively suppressed by #StratosphericAerosolInjection (#SAI).”
5/10
“For the AMO, the low contrast between the cold-tongue pattern and its surroundings in the North Atlantic, predicted under global warming, is restored under #SAI scenarios to similar patterns as in the historical period.”
6/10
“The frequencies of El Niño and La Niña episodes modestly increase with GHG emissions in CESM2, while #StratosphericAerosolInjection (#SAI) tends to compensate for them.”
7/10
“All climate indices' dominant modes of inter-annual variability are projected to be preserved in both warming & SAI scenarios. However, the dominant decadal variability mode changes in the AMO, NAO, and PDO induced by global warming are not suppressed by #SAI.”
8/10
Read the scientific study entitled: "Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios" here ⬇️ acp.copernicus.org/articles/23/58…
🚨The Politics of Geoengineering (book) is out, offering 1st comprehensive social science view of #geoengineering.
It examines political, legal, economic & societal dimensions of CDR & SRM, from Africa to the Asia-Pacific, amid urgent governance & ethical debates
Chapters🧵1/15
2/ Chapter 01: Geoengineering has shifted from theory to contested policy, with technology outpacing governance. The analysis highlights political, legal, economic, and justice dimensions and calls for urgent global oversight.
3/ Chapter 2 examines Carbon Dioxide Removal (CDR) as geoengineering, analyzing CO2 extraction, storage, and conversion, with SWOT insights on techniques and implications for sustainable climate action.
🚨Is carbon dioxide removal (#CDR) in the Arctic really feasible?
A new peer-reviewed study systematically assessed proposed Arctic CDR pathways and finds that feasibility is far more limited than often assumed.
DETAILS🧵1/14
2/ As Arctic warms rapidly (4x) & attracts attention for climate interventions, can it host CDR at meaningful scale?
To answer this, authors conducted a comparative assessment of major CDR approaches proposed for Arctic regions, spanning both nature-based & engineered methods.
3/ The analysis draws on existing empirical studies, pilot projects, and modeling literature, evaluating each CDR pathway against biophysical constraints, technical readiness, environmental risks, and governance requirements.
🚨2025 Year in Review: Solar Geoengineering Edition🚨
As we enter 2026, we’re excited to share our yearly summary for #SRM: "Solar Geoengineering in 2025: Rays of Hope, Clouds of Doubt."
Here’s what we cover in this comprehensive review:🧵1/11
2/ 𝐖𝐡𝐚𝐭’𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞𝐝 𝐢𝐧 𝐨𝐮𝐫 𝟐𝟎𝟐5 𝐫𝐞𝐯𝐢𝐞𝐰?
1️⃣ Rising Temp & Escalating Climate Impacts
2️⃣SRM Funding Announcements
3️⃣Top SRM Stories
4️⃣Restrictions & Bans on SRM
5️⃣Essential SRM Reads
6️⃣SRM in Media
7️⃣Research Highlights
8️⃣Our Work Across Geoengineering
3/ 2025 was the third-warmest yr on record. @CopernicusEU shows the last 11 yrs were the warmest ever, with the global average temp in yrs 2023-25 exceeding 1.5 °C. Top climate disasters caused $120B+ in losses, intensifying debates over mitigation, CDR & SRM.
🚨Two recent engineering studies examine whether H2-powered aircraft can reliably deliver large payloads to the lower stratosphere for #SAI.
The papers compare a conventional tube-wing aircraft & a canard-wing alternative, analyzing design feasibility & performance limits🧵1/14
2/ Delivering aerosols to these altitudes with large payloads is difficult using existing aircraft.
Both studies explore H2 propulsion b/c it offers high gravimetric energy density & zero CO₂e, potentially enabling long-duration missions without adding direct C emissions
3/ To enable comparison, both designs are evaluated against the same core mission:
• Climb and cruise at 65,000 ft
• Sustain flight for ~3.5 hours
• Deliver a ~50,000 lb aerosol payload
• Operate near aerodynamic and propulsion limits typical of the lower stratosphere
For smallholder agroforestry, traditional methods are labor-intensive, expensive & hard to scale. As a result, farmers are locked out of climate finance.
3/ So, in this study researchers used an approach "DiameterAlgorithm," a non-contact method that estimates tree diameter (DBH) from a single photograph.
Instead of manual tapes or costly sensors, it relies on computer vision and a simple reference tag placed on the tree.