Dr. Lutz Böhm Profile picture
Jul 28 23 tweets 6 min read Twitter logo Read on Twitter
Was hat die zurückgehende Eisfläche der #Antarktis mit dem 10 DM Schein zu tun?

Im Bezug auf #Klima|themen wie Temperaturen und Eisflächen liest man in letzer Zeit über 4 oder 6 #sigma Events. Was ist das genau?

#Wissenschaftskommunikation
(unterstützt von @BernhardWerner)
1/22 https://twitter.com/think_or_swim/status/1683556231481286656/photo/1
Auf dem 10 DM Schein ist Carl Friedrich Gauss zu sehen. Aber nicht nur das, sondern auch eine sogenannte Normalverteilung

Die Normalverteilung, auch als Gauss-Funktion oder Glockenkurve, ist eine Wahrscheinlichkeitsverteilung, die viele Phänomene der Natur modellieren kann

2/22 Von Deutsche Bundesbank, Frankfurt am Main, Germany - http://www.bundesbank.de/Redaktion/DE/Standardartikel/Kerngeschaeftsfelder/Bargeld/dm_banknoten.html#doc18118bodyText2, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=3813487
Wir können also zB viele Jahre die Ausdehnung der antarktischen Eisfläche messen und dann bilden wir aus diesen ganzen Werten einen Mittelwert

Die Werte um den Mittelwert kommen am häufigsten vor

Gut. Natürlich ist die Größe der Eisfläche nicht konstant sondern schwankt

3/22
Wenn man jetzt genügend Messwerte hat, bekommt eine Verteilung, also für jeden Wert der Eisfläche eine Häufigkeit für deren Vorkommen.

Man trägt dabei die Eisfläche auf der horizontalen x-Achse und die dazugehörige Wahrscheinlichkeit auf der y-Achse auf.

4/22 Von StefanPohl - Eigenes Werk, CC0, https://commons.wikimedia.org/w/index.php?curid=31516368
In vielen messbaren Systemen erhält man (annähernd) eine Normalverteilung, für die Gauss eine mathematische Beschreibung gefunden hat.

Der Clou: Man kann jetzt Abweichungen vom Mittelwert mit bestimmten Kennzahlen charakteriseren.

5/22
So gibt es zB die #Standardabweichung, oft mit dem griechischen Buchstaben #sigma (σ) bezeichnet, die man mit Hilfe der Gleichungen von Gauss berechenen kann.

Das sind durchschnittliche Abweichungen vom Mittelwert nach links und rechts.

6/22
Hat man die Verteilungsfunktion und kennt die Standardabweichung kann man folgendes sagen:

Knapp 68,3% aller gemessenen Wert der Eisfläche liegen im Bereich des Mittelwert +/- 1 Standardabweichung sigma

7/22 Von M. W. Toews - Eigenes Werk, based (in concept) on figure by Jeremy Kemp, on 2005-02-09, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1903871
So kann man weiter machen:

Knapp 95,5% aller gemessenen Wert der Eisfläche liegen im Bereich des Mittelwert +/- 2 Standardabweichung sigma

und weiter

Knapp 99,7% aller gemessenen Wert der Eisfläche liegen im Bereich des Mittelwert +/- 3 Standardabweichung sigma

8/22
Man kann es auch andersherum betrachten
Außerhalb des Bereichs +/- 1 Standardabweichung sigma um den Mittelwert liegen 100%-68,3%, also 31,7% aller Messwerte

Außerhalb des Bereichs +/- 3 Standardabweichung sigma um den Mittelwert liegen 100%-99,7%, also 0,3% aller Messwerte
9/22
Hier kommen wir zunächst zu den Temperaturen.

Misst man über einen langen Zeitraum die Temperatur auf dem Land, kann man eine Normalverteilung aufstellen, mit einem Mittelwert und dazugehörigen charakteristischen Größen wie der Standardabweichung

10/22
Die Mittelung ist hier etwas komplizierter, weil die Basis nicht nur eine, sondern viele Verteilungen für kleinere Zeiträume sind.

Der Einfachheit halber aber mal so betrachet, als hätten wir eine Verteilung und wir schauen uns dann die folgenden Jahre an.

11/22
Jetzt schaut man an, auf wieviel Prozent der Landfläche bestimmte Temperaturen auftreten.

Für Temperaturen auf der Grenze Mittelwert +1 Standardabweichung sigma sieht man, dass diese Abweichung auf immer mehr, ca. 60% der Landfläche auftritt.

12/22
Wir wissen jetzt auch schon, dass es ziemlich unwahrscheinlich ist, dass Temperaturen, die jenseits der 2 oder 3 sigma Grenze liegen, überhaupt auftreten.

Aber auch diese Temperaturen, die also früher extrem selten waren, treten nun auf immer mehr Landfläche auf.

13/22
Zum Bsp treten nun über 3 sigma abweichende Temperaturen auf 10% der Landfläche auf

Abweichung über 4 sigma, was bedeutet, dass nur 0,0063% der Messwerte außerhalb dieses Bereichs um den Mittelwert vorkommen, sind lange Zeit entsprechend praktisch gar nicht vorgekommen

14/22
Das dürfte bisher eher ein rein theoretisch und eben sehr unwahrscheinlich auftretender Temperaturbereich gewesen sein, der vielleicht nur ein Resultat der mathematischen Darstellung als Normalverteilung ist, aber so nie direkt gemessen wurde.

15/22
Leider sieht man auch diese Temperaturen nun wirklich auftreten. Bisher auf ca. 3% der Landfläche, Tendenz steigend.

Das sind also, etwas vereinfacht, 4 sigma Events bezüglich der Temperatur.

16/22
Aktuell sieht man auch solche Darstellungen für die antarktische Eisfläche

In den letzten knapp 30 Jahren lagen die Abweichungen um den Mittelwert der Eisfläche im Bereich +/- 3 Standardabweichungen, wobei größere Abweichungen mit der Zeit zunehmen

17/22
Dramatisch an dieser Abbildung ist die Abweichung in diesem Jahr. Dort sieht man eine Abweichung nach unten um 6 Standardabweichungen.

Der Vergleich ist etwas schräg, aber: Es ist wahrscheinlicher im #Lotto zu gewinnen, als dass man so eine Abweichung vom Mittelwert sieht

18/22
Basierend auf dieser Abweichung vom Mittelwert nennt der Tweetautor es auch einen 6-sigma-Event bzw ein 1-Mal-in-7,5 Mio.-Jahren-Event.

Es ist statistisch gesehen einfach praktisch unmöglich, dass das passiert.
Doch es passiert.
Genau jetzt.
In der #Antarktis.

19/22
@BernhardWerner hat für mich das mit der Mathematik etwas glatt gebügelt.

Folgt auch seinem anderem #WissKomm Account @SumAndProduct mit coolem Content (Wirklich! Er gewinnt Preise damit, es lohnt sich ;-) ) und checkt seinen #Youtube Kanal aus!

20/22
youtube.com/@sumandproduct
Dies zum vereinfachten mathematischen Hintergrund der #Normalverteilung und der #Standardabweichung, was das mit dem 10 DM Schein, Lottospielen, der #Antarktis und dem #Klimawandel zu tun hat.

Fragen? Kommentare?
Danke fürs Lesen!

#WissKomm
21/22
Hier noch einige Quellen:
Normalverteilung


Varianz
https://t.co/BQpB3P01EM

Deutscha Mark
https://t.co/o842qQNc1m

22/22de.wikipedia.org/wiki/Normalver…
de.wikipedia.org/wiki/Varianz_(…
de.wikipedia.org/wiki/Bargeld_d…
Und zurück zum Anfang, weil man das so macht :-)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Dr. Lutz Böhm

Dr. Lutz Böhm Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @DrLutzBoehm

Jul 21
Im Zusammenhang mit der großen #Hitze in Teilen der #USA gibt es dort aktuell Diskussionen über die sogenannte #WetBulbTemperature.

Was ist das? Was hat es mit dem #Klimawandel und dem #Hitzeschutzplan zu tun?

Ich versuche dies in diesem Thread zu klären.

#WissKomm

1/23 Image
Zunächst mal: Ich habe deutsche Accounts of #TikTok gesehen, die offensichtlich einfach #Wikipedia als Informationsbasis nutzen und die Übersetzung ist dort leider einfach falsch.

Die #WetBulbTemperature ist NICHT die #Kühlgrenztemperatur sondern die #Beharrungstemperatur.

2/23
Was ist nun die #Beharrungstemperatur?

Dafür muss ich kurz über die #Luftfeuchtigkeit reden.

Die Luftfeuchtigkeit ist ein relatives Maß dafür, wieviel Wasserdampf in der Luft ist. Es setzt die tatsächliche Wasserdampfmenge mit der maximal möglichen Menge ins Verhältnis.

3/23 Image
Read 25 tweets
Jun 23
Im @DeutschesMuseum in München steht ein Replik der Bathysphäre (Druckkugel) Trieste. Ich zeige diese in meiner Vorlesung zum Thema hydrostatischer Druck.

Einsatztiefe bis ≈11.000 m, was in etwa 1100 bar Druck entspricht.

#Titan #WissKomm
1/14
https://t.co/Cqv4tpCArede.wikipedia.org/wiki/Trieste
Der hydrostatische Druck, der auf die Kugel wirkt, ergibt sich dabei aus dem Produkt von der Wasserdichte (~1000 kg/m³), der Erdbeschleunigung (9,81 m/s²) und eben der Wassertiefe

In diesem Video zeige ich die physikalische Herleitung

2/
Gerundet ergibt sich zB für den Mariannengraben (10.910 m Tiefe) ein Druck von 110.000.000 Pascal bzw 1100 bar.

Das entspricht also in etwa 1100 mal dem Atmosphärendruck.

Entscheident ist nun, dass innerhalb des U Boots annähend eben dieser Atmosphärendruck vorliegt.

3/
Read 15 tweets
Jun 17
Heute sind im Rahmen der @LNDWBerlin auch unsere @TUBerlin @tub_vt Labors in der Ackerstrasse in Wedding geöffnet.
Die Programmpunkte findet ihr in diesem Thread.

Schaut gerne vorbei.
Und folgt uns gerne auf @instagram unter @tub_vt

#lndw23

1/6
instagram.com/tub_vt Image
Wenn ihr hier im Programm nach "Wedding", "@TUBerlin" und #Verfahrenstechnik sortiert, findet ihr unsere Programmpunkte

2/6
langenachtderwissenschaften.de/programm
Simulation und Experiment – Laborführung

3/6
langenachtderwissenschaften.de/programm/detai… Image
Read 6 tweets
Mar 27
"The future of #ChemicalEngineering"

I asked @slidesgpt to create a slide deck on the topic with #AI.

Some might say "pretty generic" again but let me tell you:
At every conference, there are presentations looking at least partially like this.

Let's go through it.

1/15
For a start, it is good that @slidegpt warns you that you should have a critical look at the content.

2/15
If you want to talk about the future, start with the past. Okay.

It also gives you a comment so that you can just make a karaoke session out of it:

"[...] Understanding this history is important for understanding the current state of the field and predicting its future."

3/15
Read 15 tweets
Mar 22
#AI tools in science
(kann verstehen, wenn ihr jetzt schon gernervt wegrennt)

Ich stelle in der Arbeitsgruppe ein paar #AI Tools vor.

Vielleicht habt ihr noch Ideen.

Einiges kommt aus den Threads von @MushtaqBilalPhD.

Ist nur grob schlaglichtartig zusammen gestellt.
1/19 Image
Collection by @MushtaqBilalPhD

2/x Image
@OpenAI #ChatGPT
Deutsch/Englisch

Schreibe einen Text zum Thema X (sehr generisch)

Verbessere meinen Text

Gib mir Theoriefragen zum Fach X

Programmcode in verschiedenen Sprachen (Python usw)

3/x
openai.com/blog/chatgpt Image
Read 19 tweets
Nov 21, 2022
Wie viele #Meerschweinchen werden benötigt, um einen Heizlüfter zu ersetzen?

Ich wurde inspiriert durch folgende Darstellung von @quarkswdr.
Im folgenden 🧵 werde ich kurz erklären, wie ich das überschlagen habe.

Tl;dr: 858,3

#WissKomm


1/14
Um die Wärmeleistung \dot_Q eines einzelnen Meerschweinchens zu berechnen, nutze ich folgende Formel:

Wärmeleistung \dot_Q = Wärmeübergangskoeffizient alpha * Übergangsfläche A * Temperaturdifferenz \DELTA T

Wie komme ich an die benötigten Größen?

2/14
Fangen wir mit den einfachen Dingen an:
Zunächst mal nehme ich die Geometrie der Meerschweinchen als zylinderförmig an.

Die Übergangsfläche ist die Mantelfläche des Zylinders + 2 Mal die Querschnittsfläche
A=2*PI()*(d/2)^2+PI()*d*L

3/14
Read 17 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(