Our paper on JN.1 is now online @TheLancetInfDis!
The manuscript explains how a single RBD mutation L455S could turn BA.2.86 into a heavy immune evasive variant JN.1.
Notably, JN.1 is now approaching worldwide dominance (42% two weeks ago). thelancet.com/journals/lanin…
Two months ago, we warned about JN.1 due to its extreme immune evasion. The reason why we paid attention to JN.1 so early is that we know BA.2.86 is very weak to Class 1 antibodies and L455S is one of the strongest Class 1 antibody escaping mutations. 2/6
Many labs have shown that BA.2.86 is well-neutralized. However, the absolute neutralizing titers cannot tell the full story. Since the majority of BA.2.86-neutralizing Abs are from a single epitope, huge changes in titers could happen when BA.2.86 acquires critical mutations. 3/6
So in the future, we should not only focus on the serum neutralization titers of a new variant but also care about the characteristics of the effective neutralizing antibodies, especially when their epitope distributions are dominated by one class, similar to BA.2.86. 4/6
Also, the case of JN.1 highlights the importance of closely monitoring strains with high ACE2 binding affinity and distinct antigenicity, like BA.2.75 and BA.2.86, despite their temporarily unremarkable immune evasion capabilities. 5/6
Such strains could survive and transmit at low levels, since their large antigenic distance to dominant strains allows them to target distinct populations and accumulate immune-evasive mutations rapidly, often at the cost of receptor binding affinity. 6/6
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Our research on how repeated Omicron exposure mitigates ancestral strain immune imprinting is finally out in @Nature!
In this paper, we found that multiple Omicron exposures can induce high proportions of Omicron-specific Abs that target new RBD epitopes.
There is an additional burning question following this study. In this paper, we showed that 3 doses of inactivated vaccination + 2 Omicron infection could override immune imprinting. However, multiple studies using mRNA vaccine cohorts did not see this phenomenon.
Updates on BA.2.86. 1) BA.2.86's ACE2 binding affinity is very high. 2) BA.2.86 has lower fusogenicity than XBB.1.5. 3) BA.2.86's infectivity in Vero cells is similar to BA.1, lower than XBB.1.5. 4) Structure analysis shows that BA.2.86's Spike prefers RBD "down" conformation.
BA.2.86's RBD showed a pretty high hACE2 binding affinity measured by SPR, higher than that of XBB.1.5 and EG.5 and is even comparable to "FLip" variants like HK.3. BA.2.86's V483del indeed decreases ACE2 binding, but R403K is just too powerful and makes up for the loss. 2/n
We also measured the cell-cell fusion capability using Spike-transfected 293T cells and 293T-hACE2 cells. BA.2.86 showed a lower fusogenicity than XBB.1.5, despite the fact that BA.2.86's ACE2 binding affinity is much higher. Note this assay is free of pseudoviruses. 3/n
Sharing some new experimental data on BA.2.86: 1) BA.2.86 is antigenically distinct compared to XBB.1.5. 2) BA.2.86 can significantly escape XBB-infection/vaccination induced antibodies. 3) However, the infectivity of BA.2.86 may be much lower than XBB.1.5 and EG.5. (1/n)
By using pseudovirus neutralization assay and antigenic cartography (based on mRNA immunized mouse serum), we found that BA.2.86 is antigenically distinct from WT, BA.2, BA.5, and XBB.1.5. This means that XBB-induced antibodies cannot well recognize and neutralize BA.2.86. (2/n)
Indeed, BA.2.86 can induce significant antibody evasion of plasma isolated from convalescents who experienced XBB breakthrough infection or reinfections. BA.2.86's immune evasion capability even exceeds EG.5 and is comparable to "FLip" variants (XBB.1.5 + L455F & F456L). (3/n)
F456L-carrying XBB*, like EG.5, is rapidly rising. Meanwhile, XBB*+L455F+F456L is also growing fast. Some updates explaining their advantages: 1) F456L evades serum neutralization, even after XBB infection. 2) L455F+F456L combo adds on evasion and could also boost ACE2 binding!
The L455F+F456L RBD mutation combo is a very smart move by the virus (it's actually an LF->FL shift). Note that both individual L455F or F456L actually lose ACE2 binding, but together, the LF->FL shift somehow strengthened ACE2 interaction while destroying most antibody binding.
The emergence of 455 & 456 mutations is well-predicted half-year ago by our model built on DMS. Interestingly, we recently found that F456L is much more well-tolerated on the XBB.1.5 backbone instead of BA.2, which may explain why F456L only started to rise just now.
Sharing our latest work on SARS-CoV-2 immune imprinting.
Main finding:
Repeated Omicron infection/boosting alleviates WT vaccine-induced immune imprinting by generating many potent XBB-neutralizing Omicron-specific antibodies that target new RBD epitopes. biorxiv.org/content/10.110…
First, let's revisit the major concept of SARS-CoV-2 immune imprinting:
When we experience a variant-vaccine boosting or breakthrough infection, our immune system will mainly recall WT vaccination-induced memory B cells and rarely produces variant-specific antibodies. 2/n
The problem caused by this concept is that when the boosting/infecting variant has a long antigenic distance to WT, the majority of memory B cells recalled will be those that target conserved and non-neutralizing epitopes, which will greatly hinder the antibody response. 3/n
Recently, many fast-growing XBB lineages have gained RBD mutations on K478, such as VOI XBB.1.16 (K478R), XBB.2.3.5 (K478N), XBB.2.3.4 (K478Q). Also, many XBB* have independently obtained F456L, like FD.1.1, FE.1, XBB.1.5.10. In this thread I'll briefly discuss these mutations.
Like the results by Kei @SystemsVirology, we found XBB.1.16 and XBB.1.5 have comparable immune evasion capabilities in the serum tested. The ACE2 binding affinity of XBB.1.16 and XBB.1.5 is also similar. In contrast, F456L brings additional immune evasion but lowers ACE2 binding.
F456L escapes XBB.1.5-effective class I mAbs. These mAbs are quite abundant in various immune backgrounds, such as people who experienced BA.5 breakthrough infections or repeated Omicron infections. Those that are developing RBD-targeting mAb drugs should pay attention to F456L