Ryan Hisner Profile picture
Dec 25, 2023 17 tweets 6 min read Read on X
Something’s happening here: BA.2.86 and the furin cleavage site (FCS)

The FCS has been highly conserved in all SARS-CoV-2 lineages. Why is it disappearing so much more frequently in BA.2.86/JN.1? 1/16 Image
The FCS, located around S:681-685, is one of the most distinctive features of SARS-CoV-2. Its presence causes the spike to be cleaved within the cell by furin, priming it for membrane fusion & cell entry (which requires a 2nd spike cut by TMPRSS2). 2/16
Image
Image
Early studies showed the FCS to be essential for SARS-CoV-2 infection of lung cells, and a study by @PeacockFlu showed that the FCS was required for transmission (in ferrets) & evaded host immune defenses. 3/16
Image
Image
The FCS is not only highly conserved but has been enhanced by P681H/P681R—which have been universal for nearly 3 years. Omicron added the FCS-adjacent S:N679K, but apart from that, even mutations in the surrounding region have been uncommon. 4/16
But in BA.2.86—mainly JN.1 (BA.2.86 + S:L455S = JN.1) as it’s the dominant form of BA.2.86—FCS-destroying mutations have arisen with remarkable frequency. To be clear, this is a tiny minority of all BA.2.86, but it’s a clear departure from previous trends. 5/16 Image
The most common FCS-destroying mutation has been S:R683W, which has been in ~36 BA.2.86* sequences. These are very scattered, so they represent 20 or more independent acquisitions. The largest R683W cluster seems to be five sequences. 6/16 Image
FCS-destroyer S:R683Q is less common, with 14 sequences, but 11 of those sequences belong to the same branch, which has spread across 5 countries and 3 continents. 7/16 Image
Intriguingly, this branch is part of a larger (400-sequence) JN.1 branch with a 2-nucleotide mutation: ORF1b:V1271T (NSP13_V348T). Two-nucleotide mutations acquired in one leap are extremely rare, yet this one occurred in three different (small) XBB lineages in 2023. 8/16 Image
Prior to 2023, ORF1b:V1271T was in just 25 sequences—one Delta, the rest BA.1/2/5. All acquired both nuc mutations in one jump. Only 278 sequences ever have had 1 of these 2 nuc mutations but not the other, a strong sign each individually is deleterious. 9/16 Image
Curiously, there appears to be a 4-sequence branch just below the S:R683Q one (within the ORF1b:V1271T lineage) that has lost S:H681R through an S:R681P reversion. The furthest sequence on this branch seems to have acquired the extraordinarily rare S:P681S. 10/16 Image
It’s not entirely clear of the four S:R681P sequences on the branch above are real or some sort of artifact, but the sequences look clean, come from 3 different originating labs and 2 different submitting labs, and fit the pattern of unusual FCS mutations in BA.2.86. 11/16
While the FCS-destroying R683W & R683Q are the most extreme examples, several other FCS or FCS-adjacent mutations have sprung up w/BA.2.86. S:K679M, for example, is in 22 BA.2.86, compared to 29 previous sequences ever (of which zero had S:681R). 12/16 Image
More common have been mutations at the FCS-adjacent S:S680 in BA.2.86. S680F is the most frequent, but S680P and S680Y have also appeared numerous times. I do not know what effect this is expected to have on the FCS. 13/16 Image
S:R681H reversions (which brings 681 back to the residue in almost all other Omicron lineages) have also been quite common. But there are so many contaminated sequences recently that deciphering exactly how common this reversion has been would require a lot of work. 14/16
There also seem to be an increase in mutations in various other FCS-region residues, but I don’t have the energy to do an analysis of that right now. I’m guessing lineage arch-guru @siamosolocani can speak to this though. 15/16
What is the meaning of it all? People probably get tired of me saying this, but I don’t know. S:681R is thought by most to increase FCS efficiency. Does this somehow reduce transmissibility in BA.2.86? Are FCS-loss mutations a kind of overcompensation? Thoughts welcome. 16/16
I like the idea of @PriscillaFalzi1—premature shedding of S1 (which makes cell attachment impossible) could explain this. This would also help explain the numerous apparent K679N & R681P reversions. As with NTD deletions, there's a stability tradeoff.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Ryan Hisner

Ryan Hisner Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @LongDesertTrain

Oct 22
I beg to differ! If it is not a sequencing mistake—and it looks clean—one of these BA.3.2 has something completely novel in SARS-CoV-2 evolution: an FCS-adjacent deletion!

One of the two QT repeats appears to have been deleted. I've never seen anything like this before. Image
Work by @TheMenacheryLab looked at a similar, more extensive, deletion. They deleted both QT repeats plus the next AA (∆QTQTN). In Vero cells (monkey kidney cells), it produced extra-large plaques & outcompeted WT virus—similar to furin cleavage site (FCS)-deletion mutants. 2/12 Image
But in human lung cancer (Calu3) cells, the ∆QTQTN-mutant replication was dramatically reduced (2.5 orders of magnitude), and in infected hamsters disease was much milder. 3/12 Image
Read 12 tweets
Oct 13
There's a new BA.3.2.2 from South Africa today. For the most part, there's been little substantial change in BA.3.2 over the past few months—mostly synonymous mutations & very little happening in spike.

But this new one has 3 spike mutations & looks quite interesting. 1/7 Image
For those not following closely, here's a 🧵 I made about BA.3.2 (not yet designated at the time) that I made some months ago, when it first burst upon the scene. 2/7
The spike mutations are T124I, N478T, & T678I.

N478T is a reversion to the ancestral AA, meaning it's gone from T->K->N->T in this lineage.

There and back again.

S:478 has been by far the most active site recently. We've seen K, T, I , E, R, N, L, M, and Q there of late. 3/7 Image
Read 7 tweets
Sep 26
Attenuation of the SARS-2 furin-cleavage site (FCS) continues apace. It's beginning to look as if some form of FCS-weakening mutation might well become fixed in the near future. Collectively, they are at ~12% globally—a totally unprecedented level—& rising quickly. 1/4 Image
In South America, this may have already happened. Recent sequences are scarce, but they nearly all have some sort of FCS-weakening mutation, mostly S:S680P in XFG.3.4.1, but with several others (S680F, S680Y, R683Q, R683W) contributing as well. 2/4 Image
The enigmatic anti-correlation between S:∆S31 & FCS ablaters—clear since summer 2024—is strong as ever. Here are the recent CovSpectrum stats for T22N & ∆S31 among all seqs & seqs w/FCS weakeners.

How exactly a 1-AA deletion in a distant region affects the FCS is unknown. 3/4 Image
Read 4 tweets
Sep 4
There's been some speculation about why, despite persistent immune activation, germinal center activity, & overall elevated Ab levels, LC patients here had very low anti-spike Ab titers. I want to highlight one interesting speculative hypothesis & offer another possibility. 1/10
The ever-fertile mind of @Nucleocapsoid proffers the possibility that exosomes could be responsible for viral spread in some tissue reservoirs. I don't know much about this topic and so don't have much to say at the moment, but I'm trying to l learn. 2/
I'll offer one other possibility: the deep lung environment (or some other tissue reservoir) favors either an extreme RBD-up or extreme RBD-down conformation.

Background: The receptor-binding domain (RBD) of the spike trimer can be up or down. It has to be up to bind ACE2... 3/ Image
Read 10 tweets
Sep 2
A fascinating new preprint w/one very unexpected finding suggests, I believe, that a large proportion of Long Covid may be due to chronic infection in a particular bodily niche, which could be crucial for finding effective LC treatments. It requires some explaining. 🧵 1/33 Image
First, a brief summary of the relevant parts of the preprint. They examined 30 people (from NIH RECOVER cohort) for 6 months after they had Covid, taking detailed blood immunological markers at 3 time points. 20 had Long Covid (PASC), 10 did not (CONV). 2/ biorxiv.org/content/10.110…Image
The PASC group showed signs of persistent, pro-inflammatory immune activation over the 6-month time period that suggested ongoing mucosal immune responses, including elevated levels of mucosa-associated invariant T cells (MAIT). 3/ Image
Read 33 tweets
Jul 30
Wow, BA.3.2 hits its 4th continent with a new sequence from Western Australia.

Reminder: BA.3.2 is a saltation variant resulting from a ~3-year chronic infection. It is very different from and more immune-evasive than all other current variants. 1/4 Image
It was collected July 15, & is most closely related to the recent S African seqs from May & June.

It has an NSP5 mutation known to be beneficial (ORF1a:K3353R) & 2 new NSP12 mutations, which is unusual. Its 9 synonymous mutations indicate it has been circulating somewhere. 2/4 Image
Seems clear now that BA.3.2 is not going away anytime soon. Its overall impact so far has been negligible, but at first BA.2.86's was as well. Once it got S:L455S (becoming JN.1) the dam burst & it set off a new wave in the global North. The question now is.... 3/4 Image
Read 4 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(