Ryan Hisner Profile picture
Jan 5, 2024 24 tweets 9 min read Read on X
Ran into what looks to me like the first very good candidate for deer-to-human transmission. Below is the Usher tree containing it. It's the one on the right.
Before going into this seq's details, a brief description of the characteristics of deer sequences I've seen. 1/20 Image
The branches leading to deer sequences are quite long. They also tend to be of variants that disappeared from circulation in humans many months ago.
The Alpha deer tree below is pretty typical. Note the most closely related human sequences are from ~6-7 months prior. 2/20 Image
The Gamma tree below is the most extensive deer-seq tree. These are long branches. I doubt if there are *any* human Gamma sequences with over 75 mutations from wild-type, for example. Here there are several. But it's not just the number of mutations that distinguish these. 3/20 Image
The types of nucleotide (nt) mutations in deer sequences are unlike any human seqs. Deer sequences overwhelmingly consist of C->T mutations. This is also the most common mutation in humans, making up ~42% of mutations. See @jbloom_lab chart below. 4/20 Image
But deer sequences are in another league entirely. It’s common to see C->T make >75% of nt mutations in them. I made Usher trees for all deer seqs, opened the first 6 trees, & selected 1 seq from each w/many mutations (less dropout) & no obvious errors or recombination. 5/20
Image
Image
Counting only the mutations that took place within the deer part of the tree, I did an amateur analysis of the types of nt mutations, as well as the amino acid (AA) substitutions in 6 deer seq. Non-synonymous nt mutations are ones that change the AA. Results below. 6/20

Image
Image
Image
Combined stats for 6 deer seqs 👇
5 things stand out:
1) Very large # of mutations
2) Extremely high C->T content (79.4%)
3) Deer *really* like the synonymous C7303T
4) Very low % of non-synonymous mutations (44.8%)
5) Few spike mutations, almost none in RBD 7/20 Image
How does the BF.11 deer-to-human candidate compare in terms of number & type of mutations? It's very similar to deer seqs—more similar than any human seq I've ever seen.
Very low non-synonymous %, very high C->T content, few spike mutations, zero in RBD—and C7303T! 8/20 Image
It's also, like most deer sequences, from a variant that ceased circulating in humans many months ago.

Why the big deal about C7303T? This is a rare mutation in humans—in just 0.07% of sequences. But it’s in about 50% of deer sequences. 9/20 Image
What about other private nt mutations in this seq? I ran all deer seq through Nextclade to extract their private mutations—ones not shared with other sequences in the tree—and compared them to their overall prevalence in human sequences. To be clear..... 10/20
...the comparison is *not* apples to apples. An equal % in each means a mutation is likely *far* more common in deer than in human seqs.
What we'd really like is the # of times a mutation has independently emerged in humans & in deer. But I don't know how to do that. 11/20 Image
Overall, the similarity of this sequence to past deer sequences is amazing to me. There's been much talk about reverse zoonosis, but this is the first sequence I've seen that really has the look of it. Nothing else comes close. 12/20
What is the risk of deer-to-human transmission of SARS-CoV-2? It's not zero, but I think it's far less worrisome than, e.g., the risk of a molnupiravir-creation hitting a mutational jackpot & spreading. See @sergeilkp & @DarrenM98230782 on this topic. 13/20
Image
Image
These deer sequences have almost no antigenically important spike mutations. None that I've seen would have the slightest chance of circulating in humans. The molnupiravir sequences, on the other hand, often have many spike mutations & at least appear to be quite fit. 14/20
Of course we only have a small sample of deer sequences—almost none Omicron—so there could be more sinister SARS-CoV-2 variants lurking out there.

Finally, how do we know this sequences is not a MOV sequence? 15/20
I assumed when I first saw it that it was a MOV creation. Branches like this—with 59 private mutations—are almost always MOV creations. Rarely, they're very old variants from a chronic infection—virological demons of the ancient world, which this is decidedly not. 16/20 Image
But a cursory examination of the mutations makes it clear this sequence is not MOV-related. First, the most distinctive MOV mutation, G->A, is less common than usual here. There are also more transversion mutations that we typically see in a MOV sequence. 17/20 Image
Finally, MOV preferentially causes mutations in certain nt contexts. For example, G w/an upstream T & downstream C—TGC—is a favored context, but AGA is a very unfavorable context. Similarly, some contexts favor MOV-driven C->T mutations, while others don’t. 18/20 Image
The preternaturally talented @theosanderson created a tool to examine the nucleotide contexts of mutations & assess the likelihood they were caused by MOV. It’s not uncommon to see probabilities of 0.99 or greater in MOV seqs. Probability for this sequence = 0.001 19/20 Image
Last, I want to give a shout out to the @nextstrain team for creating Nextclade, which features heavily in all SARS-CoV-2 work I do. I am in great debt to @ivan_aksamentov, @CorneliusRoemer, @richardneher, & whoever else created & maintains this brilliant tool.
20/20
Addendum: Thanks to @midnucas for suggesting I include the paper below. I had not read this paper, but they document 3 sequences that clearly involved human-deer-human transmission. A1/4
When looking at the Usher tree for one of the human-deer-human sequences the authors identified, I came across 2 nearby sequences that to me seem likely examples of deer-to-human transmission.
It's amazing to me that this kind of transmission happens at all. A2/4 Image
One of these clusters has an odd feature: it also involves 3 lion sequences from a zoo in North Carolina. How did a variant originating in wild white-tailed deer manage to infect lions in a zoo? I can't imagine many people—or any deer—have close contact with lions. A3/4 Image
But @PeacockFlu suggested that perhaps these lions were fed deer (leftovers from hunters' takes?) & were infected that way. That's the only thing that makes sense to me.
Does anyone know if this is common practice at zoos in North Carolina (or elsewhere)? A4/4 Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Ryan Hisner

Ryan Hisner Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @LongDesertTrain

Jul 2
Quick BA.3.2 update. Another BA.3.2.2 (S:K356T+S:A575S branch) from South Africa via pneumonia surveillance.

This means that 40% of SARS-CoV-2 sequences from SA collected since April 1 (2/5) and 50% collected after May 1 (1/2) are BA.3.2. Its foothold seems strong there. 1/3
2 interesting aspects of the new BA.3.2:
1. ORF1b:R1315C (NSP13_R392C)—This mut is in all Omicron *except* BA.3. So this may well be adaptive.

2. S:Q183H—First known antigenic spike mut seen in BA.3.2, not a major one, but one we've seen before—eg, LB.1/JN.1.9.2.1 2/3 Image
I think the unusually long branches in the BA.3.2 tree indicate 2 things:
1. Slow growth globally—fast growth results in many identical sequences, if surveillance is sufficient

2. Undersampling—BA.3.2 most common in poorer world regions with little sequencing of late. 3/3
Read 5 tweets
Jun 29
BA.3.2 update, Chapter: "I'm Not Quite Dead, Sir"

A new sequence from a traveler to the USA from the Netherlands was uploaded yesterday, with a collection date of June 17. 1/10 Image
This was a BA.3.2.1, the branch with S:H681R + S:P1162R (not S:K356T + S:A575S).

An updated, annotated version of the BA.3.2 Usher tree pictured below.

This sequence has the first new spike mutation since BA.3.2 emerged in November 2024—S:V227L. 2/10 Image
It has an extremely rare NSP5 mutation, ORF1a:T3487S (NSP5:T224S), only in 4 of ~17 million SARS-2 seqs

Intriguingly, 3 of these 4 share something in common w/this BA.3.2.

The first—and most remarkable—is a BA.2 from England that, like BA.3.2, has the ORF7ab-ORF8 deletion. 3/10 Image
Read 11 tweets
Jun 27
@yaem98684142 @TBM4_JP This analysis is extremely flawed.

There is nothing abnormal about BA.2.86 appearing in multiple countries shortly after discovery. This has been the norm lately w/reduced surveillance. 1/
@yaem98684142 @TBM4_JP The mutational spectrum analysis is poorly done. It cites a single study looking at the mutational spectrum in *three* immunocompromised individuals. Needless to say, this sample size is WAY too small. 3/
@yaem98684142 @TBM4_JP Furthermore, the IC people examined did not give rise to highly divergent variants with a large number of spike mutations. They appear to have accumulated a very modest number of mutations, with few substitutions in spike. The sequences themselves are apparently not published. 4/
Read 7 tweets
Jun 19
Interesting recombinant showed up today from Texas. It's a mixture of B.1.595, BA.1, and some flavor of JN.1. Most of the genome is from B.1.595. The ancestry of this one is clear: it directly descends from a B.1.595 sequence collected in January 2023, also in Texas. 1/11 Image
When the B.1.595 was collected this infection was >1 yr old, w/no sign of Omicron. BA.1 ceased circulating ~1 year prior.
Now a BA.1 spike appears w/just 5 changes from baseline BA.1, none in the RBD—S12F, T76I, Q271K, R765H, S939F.

This is a zombie BA.1 spike. 2/ Image
There are only a few signs of JN.1, & they're scattered. In ORF1a, we see JN.1's V3593F, P3395H, & R3821K, but the NSP6 deletion btwn these—universal in Omicron—is absent. In
M has JN.1's D3H + T30A & E19Q (in JN.1 & BA.1), yet A63T—also in both BA.1 & JN.1 is absent. 3/11 Image
Read 11 tweets
May 31
An awesome preprint on the novel, unsung SARS-CoV-2 N* protein came out recently, authored by @corcoran_lab & Rory Mulloy. I’ve previously written on N*’s demise in XEC, the top variant in late 2024/early 2025. But…
1/34
…this preprint, along with another great study by the @DavidLVBauer, @theosanderson, @PeacockFlu & others prompted me to take a closer look...
2/34biorxiv.org/content/10.110…
...and for reasons I’ll describe below, I now believe rumors of N*’s death are exaggerated.

First, XEC is in terminal decline, replaced by variants with full N* expression, so N* is back in fashion.
3/34
journals.plos.org/plosbiology/ar…
Read 35 tweets
May 15
@DameSunshine @SharonBurnabyBC B.1.1.529 wasn't/isn't a real variant; it's a placeholder that represents a putative ancestor of BA.1/BA.2/BA.3.

Bad sequences and/or coinfections tend to get categorized as B.1.1.529:—they have enough Omicron muts to be ID'd as Omicron but so much dropout/mixed signals...
1/
@DameSunshine @SharonBurnabyBC ...that a specific designation isn't possible. Travel sequencing in the US is done by Ginkgo Bioworks. Their sequences are generally poor quality & they upload *pooled* sequences—against database guidelines. The B.1.1.529 here are likely low-quality/pooled sequences from GBW.
2/
@DameSunshine @SharonBurnabyBC I think it's entirely possible that a new, divergent variant will emerge this summer. There are hints with BA.3.2 & a 50-spike-mutation BQ.1.1 that has transmitted at least once. Other similar chronic infection-derived variants are undoubtedly lurking all over, unsequenced.... 3/
Read 4 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(