A dozen more sequences of this JN.1 + K444R + Y453F just dropped. All from Brazil, all collected in 2024. 12/13 are from the Brazilian state of Bahia, but those 12 sequences come from 11 different cities. This has the potential to be a big deal.
BA.2.86 had extremely high ACE2 affinity, but as you can see in @yunlong_cao's tweet below, JN.1's S:L455S, while a crucial antibody-evasion mutation, squandered pretty much all the extra ACE2 affinity of BA.2.86 (higher = weaker ACE2 binding). 2/4
By itself, lower ACE2 binding probably isn't a huge detriment, but it left JN.1 with little room to evolve further RBD mutations, which nearly always reduce ACE2. This is probably why JN.1's RBD has remained virtually unchanged since its emergence. 3/4
Y453F has granted huge increases in ACE2 binding in previous variants, so it likely will do the same for JN.1. This could give JN.1 the mutational flexibility it has so far lacked, opening the door to further spike mutations. Stay tuned. 4/4 github.com/cov-lineages/p…
@yousitonmyspot I think the bigger story is the possibility of further RBD mutations due to the incr. ACE2 binding from Y453F. That probably gives JN.1 much more room to maneuver.
OTOH, Y453F has caused instability in some previous lineages, so it may impose a cost as well. Too soon to say.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
@DameSunshine @SharonBurnabyBC B.1.1.529 wasn't/isn't a real variant; it's a placeholder that represents a putative ancestor of BA.1/BA.2/BA.3.
Bad sequences and/or coinfections tend to get categorized as B.1.1.529:—they have enough Omicron muts to be ID'd as Omicron but so much dropout/mixed signals...
1/
@DameSunshine @SharonBurnabyBC ...that a specific designation isn't possible. Travel sequencing in the US is done by Ginkgo Bioworks. Their sequences are generally poor quality & they upload *pooled* sequences—against database guidelines. The B.1.1.529 here are likely low-quality/pooled sequences from GBW.
2/
@DameSunshine @SharonBurnabyBC I think it's entirely possible that a new, divergent variant will emerge this summer. There are hints with BA.3.2 & a 50-spike-mutation BQ.1.1 that has transmitted at least once. Other similar chronic infection-derived variants are undoubtedly lurking all over, unsequenced.... 3/
Incredible how quickly @yunlong_cao & co provide us w/info on the latest emerging SARS-CoV-2 variants.
Already, we have great data on BA.3.2 (the divergent saltation lineage detected in South Africa & the Netherlands & NB.1.8.1, an emerging contender for global dominance. 1/9
BA.3.2 is a clear outlier on the antigenic cartography map—as expected given the enormous differences between its spike protein & every other circulating variant. 2/9
It's unsurprising, therefore, that BA.3.2 evades antibodies from human sera more effectively than any other variant, though the degree of its superiority is striking. 3/9 biorxiv.org/content/10.110…
About 1 month after this monster BQ.1.1 appeared, an even more extreme sequence has shown up in Alberta. Like the BQ, it has 50 private spike mutations, but it also has >40 AA mutations elsewhere in the genome. 1/6
They include the full panoply of NSP3, NSP12, & N muts I've written about previously. ORF1a:S4398L is the most common mutation in the 4395-4398 region, this has ∆S4398, a rarity also seen in a few other extremely divergent seqs w/this constellation. 2/6
In a theme that's become familiar, it's added two spike NTD glycans, N30 (via F32S) and N155 (via S155N+F157S).
Another chronic-infection leitmotif (first noted by @SolidEvidence): reversions to common or consensus residues in related Bat-CoVs, including SARS-1. 3/6
A fascinating SARS-CoV-2 sequence was recently uploaded—collected from a dog in Kazakhstan in July 2022.
Usher places the seq 1 nuc mut from the Wuhan ref seq—C21846T/S:T95I—i.e. pre-D614G. Could this seq somehow have a close connection to the first days of the pandemic?
1/19
Of the sequences near this one on the tree, all are low-quality & clearly bad BA.1 or Delta sequences. The only genuine one is from the UK, collected April 2020. So it's likely even S:T95I was not inherited.
This sequence has several fascinating aspects. 2/
(This all assumes the sequence is accurate and that C241T & C14408T (ORF1b:P314L) are genuinely absent. Its mutational characteristics make me certain this is a good sequence, though it's not impossible there's dropout not indicated hiding C241T and/or C14408T.) 3/
Do you remember BA.3—the weakling cousin of BA.1 & BA.2 that seemed to take the worst from each & had weaker ACE2 binding than even the ancestral Wuhan Virus?
After 3 years, BA.3 is back.
And it is transmitting.
Who saw this coming?
1/13
While the full extent of the new BA.3’s spread is not known, it’s been detected in 2 different South African regions through regular (not targeted) surveillance by @Dikeled61970012, @Tuliodna, & the invaluable South African virology community.
2/13 github.com/cov-lineages/p…
After nearly 3 years of intrahost evolution in a chronically infected person, the new BA.3 is almost unrecognizable. It has ~41 spike AA substitutions (4 of which are 2-nuc muts) to go with 14 AA deletions (∆136-147+∆243-244). We’ve seen nothing like this since 2023.
3/13