How SARS-CoV-2 replicates once it enters the cells, has made surprising discoveries that could be the foundation for future antiviral therapies. It also has important implications as replication of the SARS-CoV-2 has, so far, received less attention from researchers. 1/
The viral life cycle can be broken down into 2 main stages: the 1st where the virus enters the cell, & 2nd is replication where the virus uses the molecular machinery of the cell to replicate itself by building its parts, assembling them into new viruses that can then exit 2/
The new study focuses on how the Envelope protein of SARS-CoV-2 controls late stages of viral replication. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. 3/
The researchers marked the Envelope protein with fluorescent tags to track its movement within cells and used proteomics to identify key pathways that allow SARS-CoV-2 to take over the internal compartments of the infected cell—known as organelles—for its replication. 4/
They identified a surprising aspect of its replication in its use of a compartment called the lysosome during viral release. The Envelope protein localises itself to the Golgi complex and to lysosomes. 5/
Lysosomes are acidic, degradative organelles, but SARS-CoV-2 uses its Envelope protein as an ion-channel to neutralize their acidity and so enhance viral release. 6/
So the data outline trafficking pathways and routes taken by the E viroporin of SARS-CoV-2, linking viral sequences with cellular factors that govern movement between the ER, Golgi, and lysosomes. 7/
Such insights on replication could eventually be applied to create new antivirals that inhibit the channel activity of the Envelope protein. These could apply not only to SARS-CoV-2, but to the β-coronavirus family and any other virus that replicates with the same mechanisms. 8/
These findings show what an exquisite cell biologist the SARS-CoV-2 virus is, and shed new light onto how infection with SARS-CoV-2 can disrupt the function of essential intracellular compartments, known as organelles 9/9
A new study provides some of the strongest evidence yet that mitochondrial dysfunction can directly cause #Parkinson’s disease, rather than being a consequence of neuron loss.
➡️ Researchers used a unique mouse model carrying a mutation in CHCHD2, a mitochondrial protein linked to a rare inherited form of Parkinson’s that closely mimics the common, late-onset form. 1/
Key Findings
➡️ Mutant CHCHD2 accumulates in mitochondria, making them swollen and structurally abnormal.
➡️ Cells shift away from normal energy production and develop oxidative stress due to buildup of reactive oxygen species (ROS).
➡️ Alpha-synuclein aggregation occurs after ROS rises, suggesting oxidative stress triggers Lewy body formation.
➡️ Human brain tissue from people with sporadic Parkinson’s showed CHCHD2 accumulation inside early alpha-synuclein aggregates, confirming relevance beyond the rare genetic form. 2/
Implications
➡️ This work maps a step-by-step causal chain:
CHCHD2 mutation → mitochondrial failure → metabolic shift → ROS buildup → alpha-synuclein aggregation → Parkinson’s pathology
➡️ It supports the idea that mitochondrial defects may underlie many forms of Parkinson’s, not just the inherited type.
➡️ Targeting oxidative stress, mitochondrial health, and energy pathways could offer new therapeutic strategies. 3/
New research in Cell Reports Medicine helps explain why women are more likely to develop #LongCOVID — and often experience more severe, persistent symptoms like fatigue, brain fog, and pain.
The key? Differences in the immune system, gut, and hormones. 1/
Researchers studied 78 people with LongCOVID (mostly mild initial cases) and compared them to 62 who recovered fully.
➡️ One year later, women with Long COVID showed clear biological differences — especially signs of gut inflammation and “leakiness.” 2/
The study also found anemia and hormone imbalances.
Women with LongCOVID had lower testosterone — a hormone that normally helps control inflammation.
➡️ Lower testosterone was linked to more fatigue, pain, brain fog, and depression. 3/
➡️ Long COVID isn’t one disease — it’s a complex web of immune, vascular, and metabolic dysfunctions.
From fatigue & brain fog to heart & lung complications, it stems from viral persistence, autoimmunity, and mitochondrial damage. 1/
Proposed mechanisms:
1️⃣ Persistent viral reservoirs or antigen remnants
2️⃣ Reactivation of latent viruses (e.g., EBV)
3️⃣ Immune dysregulation & autoimmunity
4️⃣ Endothelial injury and microclots
5️⃣ Gut microbiome imbalance
6️⃣ Mitochondrial dysfunction and energy metabolism impairment. 2/
Current management:
- largely symptomatic—rehabilitation, pacing, and supportive therapies.
-Emerging treatments: under study — antiviral drugs, immune-modulating agents, microbiome restoration, and mitochondria-targeted therapies.
-Vaccination: reduces risk and severity of LongCOVID. 3/
➡️ New research shows that paternal SARS-CoV-2 infection before conception can alter sperm RNA — leading to anxiety-like behavior & brain gene changes in offspring.
A biological “memory” of infection may pass across generations. 1/
Beyond infection: inheritance
➡️ Male mice infected with SARS-CoV-2 fathered pups with altered hippocampal transcriptomes & higher anxiety.
Injecting sperm RNA from infected males reproduced the same effects — clear evidence of RNA-based inheritance. 2/
COVID’s unseen legacy
➡️ Study suggests COVID infection in fathers may have transgenerational effects via changes in sperm small RNAs.
Adds a new layer to how pandemics shape health — not just for one generation, but possibly the next. 3/
A new study provides new evidence to help us redefine steroid use in TB care
➡️ Given the renewed interest in the steroid dexamethasone, as a host-directed treatment during the COVID-19 pandemic, the Trinity College Dublin team provides evidence that treating patients with steroids may enhance the function of their macrophages to kill the mycobacteria, while diminishing pathways of inflammatory damage. 1/
The researchers goal was to determine whether dexamethasone impacts the macrophage's ability to fight TB. Although glucocorticoids can reactivate TB, they are paradoxically the only adjunctive host-directed therapies that are recommended by WHO for TB.
Steroids are given to patients alongside antimicrobials in certain circumstances; however, scientists don't fully understand the effect of these drugs on the immune system, especially innate immune cells such as macrophages. 2/
The researchers studied macrophages derived from the blood of healthy volunteers or isolated from lung fluid donated by patients undergoing routine bronchoscopies.
➡️ By treating and infecting these macrophages in the lab with Mtb, the scientists could examine and understand how dexamethasone affects the immune response that protects the lungs during infection. 3/