Always nice to run across a possible function of a rare mutation that's shown up in multiple chronic-infection SARS-CoV-2 seqs. Thanks to an excellent paper by @TheMenacheryLab & @J_Paul_Taylor, I think I now know why N:L13P (a reversion) shows up. 1/6
They proved that the N:1-25 region, esp. the ITFG AA motif from N:15-18, is the essential element in N's ability to suppress the formation of stress granules (SGs) in cells, which capture & disable long viral RNAs & help organizing innate antiviral immune responses. 2/6
All variants retain the ability to suppress SGs, but Omicron's N:P13L weakens N's binding to G3BP1/2—the master cellular regulators of SGs—by about 2.3-fold. That's pretty slight, & almost certainly not enough selection pressure to result in reversions in circulation... 3/6
...but >1-year-long infections, w/no transmission bottleneck, can select for slightly advantageous mutations that never have a chance to emerge via stepwise evolution.
Of course, there must have been some advantage for N:P13L to evolve in Omicron (& other lineages). 4/6
One possible reason was pointed out to me by @PeacockFlu: for one HLA haplotype (D*), N:9-17 is a potent T-cell epitope. 5/6 onlinelibrary.wiley.com/doi/10.1002/ct…
It's a pretty small thing—not like when @SolidEvidence & @wanderer_jasnah deciphered the ORF1a:K1795Q story—but when you've run up against countless genetic enigmas & inscrutable oddities, it's nice to have a (tentative) answer of any sort. I'll take a small, good thing. 6/6
Went to look up the HLA haplotype for the N:9-17 T-cell epitope & then forgot to fill it in in tweet #5. It should say B*:27:05.
More evidence Omicron's N:P13L is a factor from a paper I just read today.
"In contrast to [WT] & Delta, Omicron strongly induced SG formation, especially ...late in infection."
ISR = integrated stress response. Among other things, provokes SG formation.
ISRIB = ISR inhibitor
@StuartTurville has pointed out that WA delayed Covid spread longer than elsewhere in Australia. China has a somewhat similar immune history (as do other SE Asian countries). Perhaps BA.3.2 will do well in China once it arrives there? 2/4
I beg to differ! If it is not a sequencing mistake—and it looks clean—one of these BA.3.2 has something completely novel in SARS-CoV-2 evolution: an FCS-adjacent deletion!
One of the two QT repeats appears to have been deleted. I've never seen anything like this before.
Work by @TheMenacheryLab looked at a similar, more extensive, deletion. They deleted both QT repeats plus the next AA (∆QTQTN). In Vero cells (monkey kidney cells), it produced extra-large plaques & outcompeted WT virus—similar to furin cleavage site (FCS)-deletion mutants. 2/12
But in human lung cancer (Calu3) cells, the ∆QTQTN-mutant replication was dramatically reduced (2.5 orders of magnitude), and in infected hamsters disease was much milder. 3/12
There's a new BA.3.2.2 from South Africa today. For the most part, there's been little substantial change in BA.3.2 over the past few months—mostly synonymous mutations & very little happening in spike.
But this new one has 3 spike mutations & looks quite interesting. 1/7
For those not following closely, here's a 🧵 I made about BA.3.2 (not yet designated at the time) that I made some months ago, when it first burst upon the scene. 2/7
Attenuation of the SARS-2 furin-cleavage site (FCS) continues apace. It's beginning to look as if some form of FCS-weakening mutation might well become fixed in the near future. Collectively, they are at ~12% globally—a totally unprecedented level—& rising quickly. 1/4
In South America, this may have already happened. Recent sequences are scarce, but they nearly all have some sort of FCS-weakening mutation, mostly S:S680P in XFG.3.4.1, but with several others (S680F, S680Y, R683Q, R683W) contributing as well. 2/4
The enigmatic anti-correlation between S:∆S31 & FCS ablaters—clear since summer 2024—is strong as ever. Here are the recent CovSpectrum stats for T22N & ∆S31 among all seqs & seqs w/FCS weakeners.
How exactly a 1-AA deletion in a distant region affects the FCS is unknown. 3/4
There's been some speculation about why, despite persistent immune activation, germinal center activity, & overall elevated Ab levels, LC patients here had very low anti-spike Ab titers. I want to highlight one interesting speculative hypothesis & offer another possibility. 1/10
The ever-fertile mind of @Nucleocapsoid proffers the possibility that exosomes could be responsible for viral spread in some tissue reservoirs. I don't know much about this topic and so don't have much to say at the moment, but I'm trying to l learn. 2/
I'll offer one other possibility: the deep lung environment (or some other tissue reservoir) favors either an extreme RBD-up or extreme RBD-down conformation.
Background: The receptor-binding domain (RBD) of the spike trimer can be up or down. It has to be up to bind ACE2... 3/
A fascinating new preprint w/one very unexpected finding suggests, I believe, that a large proportion of Long Covid may be due to chronic infection in a particular bodily niche, which could be crucial for finding effective LC treatments. It requires some explaining. 🧵 1/33
First, a brief summary of the relevant parts of the preprint. They examined 30 people (from NIH RECOVER cohort) for 6 months after they had Covid, taking detailed blood immunological markers at 3 time points. 20 had Long Covid (PASC), 10 did not (CONV). 2/ biorxiv.org/content/10.110…
The PASC group showed signs of persistent, pro-inflammatory immune activation over the 6-month time period that suggested ongoing mucosal immune responses, including elevated levels of mucosa-associated invariant T cells (MAIT). 3/