2) This study presents a two-strain stochastic model to understand the factors influencing the fitness and evolution of SARS-CoV-2 variants. The model accounts for important factors like asymptomatic transmission, mutations, disease import, and the possibility of spillover events
3) โถ๏ธ Variants with milder symptoms may spread faster than severe variants, as milder cases are less likely to seek medical care and get isolated early on. However, this can still result in high hospitalizations and fatalities due to widespread infection.
4) โถ๏ธ Increased transmissibility of milder variants is a concern, as they can infect a larger segment of the population compared to more severe variants.
โถ๏ธ Prolonged infectiousness of variants, even by just a day, can significantly enhance their fitness and ...
5) ...lead to their dominance over previous strains.
โถ๏ธ The global sensitivity analysis reveals that transmission rates and recovery rates are key drivers of variant dynamics, with complex interactions between parameters influencing the wild-type strain.
6) The model provides a nuanced view of viral evolution and transmission dynamics, highlighting the need for robust surveillance, vaccination, and tailored public health interventions to manage the spread of SARS-CoV-2 variants effectively.
Thanks for reading ๐
โข โข โข
Missing some Tweet in this thread? You can try to
force a refresh
2) This study looked at different ways to detect COVID-19 in a building. The researchers tested air, surfaces, and wastewater to see which methods could best detect the virus.
They placed air samplers in the lobby of a dorm where students with COVID-19 were isolating.
3) The air samples showed higher virus levels when students with COVID-19 were present.
The researchers also collected air samples from the building's rooftop exhaust, swabbed high-touch surfaces, and tested the building's wastewater.
2) The H5N1 bird flu virus has been spreading rapidly since 2020. An important change is that the neuraminidase (NA) protein on this virus now has a longer "stalk" region.
In the past, most H5N1 viruses had a shorter NA stalk.
3) But the current clade 2.3.4.4b H5N1 viruses mostly have the longer NA stalk.
The longer NA stalk may make these H5N1 viruses more able to spread between mammals, including potentially between humans.
What an UNFORTUNATE CHOICE of WORD it is to REFER to the term โVARIANTโ in relation to SARS-CoV-2.
No one would think to call Prince William a "variant" or a mere variation of Queen Elizabeth; he shares the same family and lineage. That's all.
2) I wanted to use this analogy to highlight the significant differences in pathogenicity and transmission among the Alpha, Delta, and Omicron variants, as demonstrated by a recent study published in Nature. nature.com/articles/s4429โฆ
3) By suggesting that the various lineages of SARS-CoV-2 consist of only minor mutations in the Spike proteinโwhile overlooking the other proteinsโand by using the term "soup of variants," which I consistently contest, we diminish the profound changes ...
2) Viruses like SARS-CoV-2 have proteins on their surface called spike proteins. These spike proteins help the virus attach to and enter human cells. The spike proteins are heavily coated with sugar molecules called glycans.
3) Researchers have developed a synthetic molecule called IDS060 that can bind to these glycans on the spike protein. This binding prevents the virus from attaching to human cells, blocking infection.
WHEN and WHERE was the H5N1 influenza A virus (genotype D1.1) DISCOVERED ?
A very interesting article from
@LouiseHMoncla @angie_rasmussen @MichaelWorobey @PeacockFlu and colleagues virological.org/t/timing-and-mโฆ
2) The H5N1 influenza A virus (genotype D1.1) was discovered in dairy cattle in Churchill County, Nevada, on January 31, 2025. The detection followed a routine surveillance program, where bulk milk samples were collected from dairy processing plant silos on January 6 and 7, 2025.
3) These samples tested positive for the virus on January 10.
Investigations revealed that the virus likely jumped from birds to cattle sometime between late October 2024 and early January 2025 ...
What makes VIRUSES like Herpes, Epstein-Barr, Flu, H1N1, H5N1 and HIV so EFFECTIVE at INFECTING the BRAIN ?
Viruses can infect and damage the brain, leading to conditions like Alzheimer's, Parkinson's, schizophrenia, and depression link.springer.com/article/10.100โฆ
2) Some Viruses are able to successfully infect the brain for a few key reasons:
โถ๏ธ Direct Brain Entry: Some viruses can directly enter the brain through the nose or other pathways, allowing them to directly infect brain cells.
3) โถ๏ธ Evading Immunity: Certain viruses can hide from or suppress the immune system, enabling them to persist in the brain undetected.
โถ๏ธ Breaching the Blood-Brain Barrier: Viruses can damage the protective barrier between the brain and bloodstream ...