Al Haddrell Profile picture
Jun 26 13 tweets 4 min read Read on X
Given that the COVID numbers are on the rise, I thought I’d it useful to share some our research team’s work looking at the interplay between CO2, aerosol, SARS-CoV-2, and airborne transmission. 🧵 Image
SARSCoV2 is spread primarily through the air via aerosol. Meaning, the amount of aerosol a person produces will to some degree correlate with the amount of virus exhaled. Our group has done of studies into how different activities affect aerosol production
tandfonline.com/doi/full/10.10…
The amount of aerosol a person exhales is correlated with how loud they are talking/singing. Perhaps a reason why there have been no super spreader events reported in a library (?) Image
We’ve recently reported that the amount of CO2 in the air will affect how long SARS-CoV-2 remains infectious. Increasing CO2 to as little as 800ppm increases aerostability and transmission risk.
nature.com/articles/s4146…
Image
Both CO2 and infectious respiratory aerosol have a similar source, the exhaled breath. As a result, people have used CO2 monitors to measure the amount of CO2 in the air to get a sense of (a) how much exhaled breath is in an area, and (b) roughly how good is the ventilation. Image
Our group recently reported on the relationship between exhaled aerosol concentration and carbon dioxide across a range of activities.

thorax.bmj.com/content/78/Sup…
Sometimes the CO2 concentration correlated with the aerosol counts, and sometimes they did not. For example, when a person is silent, the amount of aerosol they produce largely correlates with the CO2 levels exhaled. Image
Conversely, the volume in which people talks or sings breaks this relationship down. When people are loud, the CO2 level is largely unchanged while the particle counts change dramatically. Image
So, what does this all mean? Collectively, these studies suggest that there are going to be specific environments where transmission would be much more likely to occur. Image
For example, in a poorly ventilated space, where the CO2 counts are high, any exhaled virus will remain infectious for much longer. If the people in the space are loud, they will be producing much more aerosol. With this combination, transmission is much more likely. Image
For example, this is not surprising. A stadium filled with people singing is a recipe for trouble.

That said, it’s not all doom and gloom. If you know you are entering an area of higher risk, adjust accordingly. For example, wear a high-quality mask. Image
I hope you find this helpful! If you have any questions about any of this, I'd be happy to try to answer them!
@CaliforniaCodes Because CO2 affects both the decay rate and physical removal of the aerosol, the relationship between CO2 and risk is non-linear.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Al Haddrell

Al Haddrell Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ukhadds

Dec 8
Thanks for your interest in our work. You’ve asked a lot of “out of the box” questions here, and I’ll address some of them.
Exhaled aerosol has a water activity of ~0.995. The RHof fog could be higher: the the aerosol would simply take up water from the gas phase. For viruses such as influenza, where the salt concentration seems to be very important, this would lead to an reduction in the decay rate. Image
This is a good question that we need to explore. Understanding airborne microbe decay is highly dependent on understanding the aerosol dynamics. And the pH dynamics in an aerosol is very complicated and need of a lot of study. Image
Read 11 tweets
Nov 1
A study came out last month looking at how long influenza remains viable in the air.

In the article, it highlights some of my larger concerns in what is happening in the field of airborne viral decay.

First off, here’s the article:

frontiersin.org/journals/micro…
Out of the gate, the article is fine.

My largest critique is the assertion that 99% decay means something. Why 99%? Why not 98%? Or 97… or 92… 87%? 83.5%?
While it sounds like I’m being coy, I’m not. 99% is an arbitrary number. That’s okay, but don’t act like it’s an agreed upon value. It isn’t.

Anyway, this is a minor issue (of someone in the field). The general trends presented by the authors is supported by their work. Image
Read 16 tweets
Oct 5
How does humidity affect the transmission of SARS-CoV-2?

There's a lot of confusion around this question. Is dry air or wet air better? Somewhere in between? In this explainer video I dive into this and go into what we know, and what we don't.
This is the first part of a (what I expect to be) a two part series. In this video I discuss how humdity affects transmission. In the followup I will dive into why humdity does, or does not, have an effect.
This is the second video on my channel (like and subscribe!).

If you found this one interesting, you may also find my other one interesting as well.
Read 4 tweets
Sep 16
Are respiratory aerosol liquid, solid, neither or both? What about the virus, where does it go? Let's get into this.
We published some work on this previously where we studied how respiratory aerosol changes once it is exhaled.

tandfonline.com/doi/full/10.10…
Once exhaled, the aerosol will begin to lose water. The rate in which the aerosol loses water will depend on the humidity (loses size faster in dry air). The humidity will also determine both the final size and particle structure. Image
Read 6 tweets
Sep 15
There's been a lot of discussion about the size of exhaled aerosol that contains the most virus. For the most part, it's thought to be in the ~1 to ~5 micron range. There's a little bit of variation between studies, but that's roughly the size of concern (“Viral”).
Image
If you are curious, this is due to a combination of the size distribution of exhaled aerosol and maximum conc that the virus can grow in the respiratory fluid. Here we looked at aerosol size, others have looked into the viral load as a function of size.tandfonline.com/doi/full/10.10…
So, N95 masks work well in filtering out the aerosol size region that is most associated with airborne viral transmission. The key really does come down to fit.

hse.gov.uk/respiratory-pr…
Read 6 tweets
Aug 14
Huge paper exploring the relationship between exhalation aerosol counts and CO2 has just been published.

Take home message: CO2 and aerosol strongly correlate in silence. Vocalisation causes this relationship to breakdown (way more aerosol than CO2).
pubs.acs.org/doi/10.1021/ac…
This has huge implications on how CO2 can be used to estimate the aerosol counts in a room. Noise matters!!

I've mentioned this work previously, it's great to see it finally published so everyone can have a good look. Image
I mentioned this work in a previous thread where I discussed the many ways in which CO2 is associated with Covid transmission.

Read 8 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(