2) The researchers studied this cow flu virus in mice and ferrets, which are common animal models used to understand flu viruses. They found that the cow flu virus can make these animals very sick, and it is able to spread throughout their bodies, including to the eyes ...
3) ... mammary glands, and muscles.
Importantly, the researchers also found that this cow flu virus is able to bind to both the bird-like and human-like receptors that flu viruses use to infect cells. Previous bird flu viruses could only bind to the bird-like receptors.
4) This ability to bind to human-like receptors means the cow flu virus may be able to more easily infect and spread between people, compared to past bird flu viruses. The virus also showed some ability to spread between ferrets through the air, though not as efficiently ...
5) ...as a normal human flu virus.
Overall, these findings suggest this new cow flu virus has acquired concerning features that could make it more likely to cause a human flu pandemic, compared to previous bird flu viruses.
6) The researchers emphasize the need for further close study, especially of any human cases that may arise from the current cow outbreak.
Thanks for reading 🙏
• • •
Missing some Tweet in this thread? You can try to
force a refresh
IS SARS-CoV-2 BECOMING "INVISIBLE"? The Hidden Truth Behind the Pandemic
As the world strives to move past the COVID-19 pandemic, a troubling narrative has emerged: the perception that SARS-CoV-2 is becoming "invisible."
2) Governments and communities are eager to return to normalcy, leading to a tendency to downplay the virus's severity. Reports of new infections and long COVID cases have been totally minimized, creating a false sense of security ...
3) ...that the virus is no longer a significant threat. However, this perception is not only a matter of public sentiment. The virus itself has evolved, most notably with the emergence of the Omicron variant. Recent research reveals that Omicron exhibits a remarkable ability ...
2) This research shows that SARS-CoV-2, the virus that causes COVID-19, stops infected cells from dying. Normally, when cells die, it helps stop viruses from spreading. By keeping these cells alive longer, SARS-CoV-2 allows itself to multiply and also helps other viruses ...
3) ... like influenza A, grow more easily.
When someone has both SARS-CoV-2 and influenza A, the two viruses can make a person much sicker. The immune system gets overwhelmed, leading to more inflammation and damage to the lungs.
ENTROPY UNLEASHED:
How Viral Protein Interactions Drive Coronavirus Adaptation in Bats and Humans
Entropy, in a general sense, refers to the level of disorder or randomness in a system. biorxiv.org/content/10.110…
2) When we talk about protein interactions and viral behavior, entropy can be viewed as a measure of how complex and varied these interactions are.
In the context of the study about coronavirus interactions in bat and human cells, here's a simplified breakdown.
3) **Complex Interactions**: The study identifies how proteins from the coronavirus interact with host cells (both bats and humans). These interactions can be highly ordered (low entropy) or more chaotic (high entropy).
Patients care most about how COVID-19 affects their health and daily life, including for those with long COVID. Scientists focus on understanding the virus to find better treatments. Both views are important for dealing with the pandemic.
2) I'm bringing up this topic because, after talking so much about the disease, its long-term effects, treatments, and vaccines, many people have forgotten that we are dealing with the most dangerous virus humanity has ever faced.
Organelles provide the possibility for the virus to organize its RNA in PROTECTED structures, concentrate REPLICATION machinery ... nature.com/articles/s4146…
2) ...compartmentalize the replication process, and hide from immune detection.
Figure 1g - The large perinuclear clusters of viral RNA demonstrate how the viral RNA is organized into PROTECTED structures.
2) Figure 3d- The nanoscale puncta of the viral RNA-dependent RNA polymerase (nsp12) within and around the viral RNA clusters show the concentration of REPLICATION machinery.