How bad are Richard Lynn's 2002 national IQ estimates?
They correlate at r = 0.93 with our current best estimates.
It turns out that they're really not bad, and they don't provide evidence of systematic bias on his part🧵
In this data, Lynn overestimated national IQs relative to the current best estimates by an average of 0.97 points.
The biggest overestimation took place in Latin America, where IQs were overestimated by an average of 4.2 points. Sub-Saharan Africa was underestimated by 1.89 pts.
Bias?
If you look at the plot again, you'll see that I used Lynn's infamously geographically imputed estimates.
That's true! I wanted completeness. What do the non-imputed estimates look like? Similar, but Africa does worse. Lynn's imputation helped Sub-Saharan Africa!
If Lynn was biased, then his bias had minimal effect, and his much-disdained imputation resulted in underperforming Sub-Saharan Africa doing a bit better. Asia also got a boost from imputation.
The evidence that Lynn was systematically biased in favor of Europeans? Not here.
Fast forward to 2012 and Lynn had new estimates that are vastly more consistent with modern ones. In fact, they correlate at 0.96 with 2024's best estimates.
With geographic imputation, the 2012 data minimally underestimates Sub-Saharan Africa and once again, whatever bias there is, is larger with respect to Latin America, overestimating it.
But across all regions, there's just very little average misestimation.
Undo the imputation and, once again... we see that Lynn's preferred methods improved the standing of Sub-Saharan Africans.
There's really just nothing here. Aggregately, Lynn overestimated national IQs by 0.41 points without imputation and 0.51 with. Not much to worry about.
The plain fact is that whatever bias Lynn might have had didn't impact his results much. Rank orders and exact estimates are highly stable across sources and time.
It also might need to be noted: these numbers can theoretically change over time, even if they don't tend to, so this potential evidence for meager bias on Lynn's part in sample selection and against in methods might be due to changes over time in population IQs or data quality.
It might be worth looking into that more, but the possibility of bias is incredibly meager and limited either way, so putting in that effort couldn't reveal much of anything regardless of the direction of any possible revealed bias in the estimates (not to imply bias in estimates means personal biases were responsible, to be clear).
Some people messaged me to say they had issues with interpreting the charts because of problems distinguishing shaded-over colors.
If that sounds like you, don't worry, because here are versions with different layering:
• • •
Missing some Tweet in this thread? You can try to
force a refresh
This research directly militates against modern blood libel.
If people knew, for example, that Black and White men earned the same amounts on average at the same IQs, they would likely be a lot less convinced by basically-false discrimination narratives blaming Whites.
Add in that the intelligence differences cannot be explained by discrimination—because there *is* measurement invariance—and these sorts of findings are incredibly damning for discrimination-based narratives of racial inequality.
So, said findings must be condemned, proscribed.
The above chart is from the NLSY '79, but it replicates in plenty of other datasets, because it is broadly true.
For example, here are three independent replications:
A lot of the major pieces of civil rights legislation were passed by White elites who were upset at the violence generated by the Great Migration and the riots.
Because of his association with this violence, most people at the time came to dislike MLK.
It's only *after* his death, and with his public beatification that he's come to enjoy a good reputation.
This comic from 1967 is a much better summation of how the public viewed him than what people are generally taught today.
And yes, he was viewed better by Blacks than by Whites.
But remember, at the time, Whites were almost nine-tenths of the population.
Near his death, Whites were maybe one-quarter favorable to MLK, and most of that favorability was weak.
The researcher who put together these numbers was investigated and almost charged with a crime for bringing these numbers to light when she hadn't received permission.
Greater Male Variability rarely makes for an adequate explanation of sex differences in performance.
One exception may be the number of papers published by academics.
If you remove the top 7.5% of men, there's no longer a gap!
The disciplines covered here were ones with relatively equal sex ratios: Education, Nursing & Caring Science, Psychology, Public Health, Sociology, and Social Work.
Because these are stats on professors, this means that if there's greater male variability, it's mostly right-tail
Despite this, the very highest-performing women actually outperformed the very highest-performing men on average, albeit slightly.
The percentiles in this image are for the combined group, so these findings coexist for composition reasons.