A concise DAY-BY-DAY SUMMARY of the KEY EVENTS during SARS-CoV-2 INFECTION 💯👍
We've chosen to share this remarkable study again, offering a different perspective that enhances our understanding of the infection process. nature.com/articles/s4158…
2) ▶️ Day -1: Participants with higher pre-existing HLA-DQA2 expression were less likely to develop sustained infection.
▶️ Days 1-3: Even in transient/abortive infections, rapid antiviral responses occurred, including MAIT cell activation and decreased inflammatory monocytes.
3) ▶️ Days 3-5: In sustained infections, interferon signaling rapidly activated in blood, preceding the mucosal response.
▶️ Days 5-7: Immune infiltration and viral load peaked in the nasopharynx, with a subset of hyperinfected ciliated cells driving viral production.
4) ▶️ Day 10: SARS-CoV-2 specific activated T cells expanded, with an unexpected prominent role for cytotoxic CD4+ T cells in the mucosal response.
▶️ Day 14: Regulatory T cells peaked, potentially helping resolve inflammation after viral clearance.
5) Overall, this dataset provides unprecedented insights into the dynamic interplay between SARS-CoV-2 and the host immune response over time.
Thanks for reading 🙏
• • •
Missing some Tweet in this thread? You can try to
force a refresh
2) This study looked at different ways to detect COVID-19 in a building. The researchers tested air, surfaces, and wastewater to see which methods could best detect the virus.
They placed air samplers in the lobby of a dorm where students with COVID-19 were isolating.
3) The air samples showed higher virus levels when students with COVID-19 were present.
The researchers also collected air samples from the building's rooftop exhaust, swabbed high-touch surfaces, and tested the building's wastewater.
2) The H5N1 bird flu virus has been spreading rapidly since 2020. An important change is that the neuraminidase (NA) protein on this virus now has a longer "stalk" region.
In the past, most H5N1 viruses had a shorter NA stalk.
3) But the current clade 2.3.4.4b H5N1 viruses mostly have the longer NA stalk.
The longer NA stalk may make these H5N1 viruses more able to spread between mammals, including potentially between humans.
What an UNFORTUNATE CHOICE of WORD it is to REFER to the term “VARIANT” in relation to SARS-CoV-2.
No one would think to call Prince William a "variant" or a mere variation of Queen Elizabeth; he shares the same family and lineage. That's all.
2) I wanted to use this analogy to highlight the significant differences in pathogenicity and transmission among the Alpha, Delta, and Omicron variants, as demonstrated by a recent study published in Nature. nature.com/articles/s4429…
3) By suggesting that the various lineages of SARS-CoV-2 consist of only minor mutations in the Spike protein—while overlooking the other proteins—and by using the term "soup of variants," which I consistently contest, we diminish the profound changes ...
2) Viruses like SARS-CoV-2 have proteins on their surface called spike proteins. These spike proteins help the virus attach to and enter human cells. The spike proteins are heavily coated with sugar molecules called glycans.
3) Researchers have developed a synthetic molecule called IDS060 that can bind to these glycans on the spike protein. This binding prevents the virus from attaching to human cells, blocking infection.
WHEN and WHERE was the H5N1 influenza A virus (genotype D1.1) DISCOVERED ?
A very interesting article from
@LouiseHMoncla @angie_rasmussen @MichaelWorobey @PeacockFlu and colleagues virological.org/t/timing-and-m…
2) The H5N1 influenza A virus (genotype D1.1) was discovered in dairy cattle in Churchill County, Nevada, on January 31, 2025. The detection followed a routine surveillance program, where bulk milk samples were collected from dairy processing plant silos on January 6 and 7, 2025.
3) These samples tested positive for the virus on January 10.
Investigations revealed that the virus likely jumped from birds to cattle sometime between late October 2024 and early January 2025 ...
What makes VIRUSES like Herpes, Epstein-Barr, Flu, H1N1, H5N1 and HIV so EFFECTIVE at INFECTING the BRAIN ?
Viruses can infect and damage the brain, leading to conditions like Alzheimer's, Parkinson's, schizophrenia, and depression link.springer.com/article/10.100…
2) Some Viruses are able to successfully infect the brain for a few key reasons:
▶️ Direct Brain Entry: Some viruses can directly enter the brain through the nose or other pathways, allowing them to directly infect brain cells.
3) ▶️ Evading Immunity: Certain viruses can hide from or suppress the immune system, enabling them to persist in the brain undetected.
▶️ Breaching the Blood-Brain Barrier: Viruses can damage the protective barrier between the brain and bloodstream ...