The results showed that intramammary H5N1 infection led to 100% mortality in the ferret dams and their suckling kits 😨 biorxiv.org/content/10.110…
2) This study looked at how the H5N1 bird flu virus can spread from infected dairy cows to their newborn calves through the mother's milk.
The researchers infected the mammary glands (breast tissue) of mother ferrets with the H5N1 virus found in dairy cows.
3) They found that this led to 100% of the mother ferrets and their nursing baby ferrets dying from the infection.
The virus was able to reach very high levels in the infected mothers' milk and spread to the babies' respiratory systems when they drank the milk.
4) This caused severe illness and rapid death in the baby ferrets.
Importantly, the researchers also found that the type of cell receptor the H5N1 virus needs to infect cells is present in both the mammary glands of the ferrets and in human breast tissue.
5) This suggests the virus could potentially spread from infected dairy cows to nursing human mothers and their babies through the milk.
This animal study provides a useful model for understanding how the H5N1 virus can spread through milk and ...
6) ...the risks it poses, especially for dairy farmers, nursing mothers and their infants. This information is crucial for controlling outbreaks and preventing the virus from spreading between animals and to humans.
Thanks for reading 🙏
• • •
Missing some Tweet in this thread? You can try to
force a refresh
IS SARS-CoV-2 BECOMING "INVISIBLE"? The Hidden Truth Behind the Pandemic
As the world strives to move past the COVID-19 pandemic, a troubling narrative has emerged: the perception that SARS-CoV-2 is becoming "invisible."
2) Governments and communities are eager to return to normalcy, leading to a tendency to downplay the virus's severity. Reports of new infections and long COVID cases have been totally minimized, creating a false sense of security ...
3) ...that the virus is no longer a significant threat. However, this perception is not only a matter of public sentiment. The virus itself has evolved, most notably with the emergence of the Omicron variant. Recent research reveals that Omicron exhibits a remarkable ability ...
2) This research shows that SARS-CoV-2, the virus that causes COVID-19, stops infected cells from dying. Normally, when cells die, it helps stop viruses from spreading. By keeping these cells alive longer, SARS-CoV-2 allows itself to multiply and also helps other viruses ...
3) ... like influenza A, grow more easily.
When someone has both SARS-CoV-2 and influenza A, the two viruses can make a person much sicker. The immune system gets overwhelmed, leading to more inflammation and damage to the lungs.
ENTROPY UNLEASHED:
How Viral Protein Interactions Drive Coronavirus Adaptation in Bats and Humans
Entropy, in a general sense, refers to the level of disorder or randomness in a system. biorxiv.org/content/10.110…
2) When we talk about protein interactions and viral behavior, entropy can be viewed as a measure of how complex and varied these interactions are.
In the context of the study about coronavirus interactions in bat and human cells, here's a simplified breakdown.
3) **Complex Interactions**: The study identifies how proteins from the coronavirus interact with host cells (both bats and humans). These interactions can be highly ordered (low entropy) or more chaotic (high entropy).
Patients care most about how COVID-19 affects their health and daily life, including for those with long COVID. Scientists focus on understanding the virus to find better treatments. Both views are important for dealing with the pandemic.
2) I'm bringing up this topic because, after talking so much about the disease, its long-term effects, treatments, and vaccines, many people have forgotten that we are dealing with the most dangerous virus humanity has ever faced.
Organelles provide the possibility for the virus to organize its RNA in PROTECTED structures, concentrate REPLICATION machinery ... nature.com/articles/s4146…
2) ...compartmentalize the replication process, and hide from immune detection.
Figure 1g - The large perinuclear clusters of viral RNA demonstrate how the viral RNA is organized into PROTECTED structures.
2) Figure 3d- The nanoscale puncta of the viral RNA-dependent RNA polymerase (nsp12) within and around the viral RNA clusters show the concentration of REPLICATION machinery.