A NEW study shows the onset of autism in COVID exposed babies at 28 months. Researchers found 23 of 211 children (11%), screened positive for autism spectrum disorder, compared with an expected prevalence of 1-2% at that age 1/
When researchers analyzed videos of children lying on their backs in what’s called General Movement Assessment, 14% of infants showed signs of developmental problems. The test evaluates early motor functions & is often used to assess the risk of neurodevelopmental disorders 2/
Later, the findings proved equally troubling. At 6-8 months old, 13 of 109 infants born to infected mothers — almost 12% — had failed to reach developmental milestones. In stark contrast, all infants in a control group born before the pandemic showed normal development. 3/
Around 11.6% of toddlers born to mothers with lab-confirmed SARS-CoV-2 infection during pregnancy showed cognitive, motor or language problems indicative of neurodevelopmental delays. By comparison, only two of 128 unexposed controls — 1.6% — showed such issues. 4/
When the eldest of the COVID-exposed babies reached 28 months, the study found another concerning pattern: 23 of 211 children — almost 11% — screened positive for autism spectrum disorder. 5/
The later findings, currently undergoing peer review ahead of publication, are a reminder that COVID’s long-term consequences, including higher risks for dementia and heart disease, continue to unravel almost five years after the pandemic began. 6/.
While the virus is generally known to cause more severe symptoms in adults than in children, emerging data suggest that babies exposed to COVID in utero face elevated risks for preterm birth, congenital heart abnormalities & rare conditions, such as situs inversus. 7/
Children born during the Covid era are now reaching the average age for autism diagnoses. Identifying developmental issues early can open the door to speech and behavioral therapies, which are proven to support a child’s development. 8/
Scientists say the full consequences of in utero exposure to the SARs-CoV-2 may take decades to uncover and understand. Even if a link is established, genetics are likely to play a crucial role. 9/
The researchers continue to analyze stored blood & other specimens from the babies in their study. “It’s a new pathogen. We don’t know how it behaves. Things might appear down the road that we were not expecting.” 10/10
➡️ Compared with healthy controls,
✔ Long COVID patients had blunted morning cortisol peaks
✔ Higher evening cortisol
✔ Loss of normal circadian pattern
Blood cortisol alone failed to detect these changes. 2/
Key insight:
➡️ Salivary cortisol profiling may be a more sensitive marker of stress-system dysfunction in LongCOVID than standard blood tests.
➡️ HPA axis disruption could underlie:
• Fatigue
• Brain fog
• Sleep disturbance
• Dysautonomia. 3/
➡️ New review highlights that persistent cognitive symptoms in COVID survivors are strongly linked to pro-inflammatory cytokines and blood–brain barrier (BBB) dysfunction.
➡️ Key culprits include IL-6, TNF-α, IL-1β, IL-8, IL-13 and MCP-1 — many remain elevated months after infection.
🔥 COVID-19 is not just a respiratory disease.
➡️ Evidence suggests cognitive impairment can occur due to:
Post-COVID fatigue isn’t just subjective.
Using advanced MRI, researchers found real changes in brain blood flow and oxygen metabolism in people with Post-COVID-19 Syndrome (PCS) after mild infection.
➡️ Key finding:
PCS patients showed increased oxygen metabolism in the hippocampus (memory hub) but reduced metabolism in the anterior cingulate cortex (ACC) — despite no visible brain atrophy. 1/
Why this matters:
➡️ Higher hippocampal metabolism was linked to better cognitive performance, suggesting a compensatory response to maintain thinking and memory in PCS. 2/
In contrast, lower anterior cingulate cortex (ACC) metabolism correlated with:
Why do some people feel exhausted long after COVID-19?
➡️ New brain-imaging research shows that even after mild COVID, people with persistent fatigue can have subtle but real changes in brain structure.
➡️ These changes are not large or widespread, but tend to appear in connected brain networks, especially areas involved in attention, decision-making, and sensory processing. 1/
Importantly, the brain regions affected overlap with areas that naturally express TMPRSS2, a protein that helps SARS-CoV-2 enter cells — suggesting certain brain circuits may be more vulnerable to the virus. 2/
The study also links these changes to brain chemical systems involved in mood, energy, and cognition (serotonin, acetylcholine, glutamate, and cannabinoids). 3/
COVID-19 doesn’t just affect the lungs — it can disrupt how cells produce energy. New research shows that COVID-19 alters the genetic “switches” that control mitochondria, the structures that power our cells. 1/
By comparing people who died from severe COVID-19, those who recovered, and healthy individuals, researchers found lasting changes in how mitochondrial genes are regulated. These changes were most prominent in genes involved in energy production and metabolism. 2/
Importantly, people with COVID-19 showed abnormally high levels of proteins that control mitochondrial structure and stress responses, suggesting long-term damage to the cell’s energy system. 3/
#LongCOVID (LC) shares striking symptom overlap with hypermobility spectrum disorders (HSD/hEDS): fatigue, brain fog, dysautonomia, pain—especially in women.
➡️ A new case series explores whether some “intractable” LC may reflect undiagnosed hypermobility disorders.
➡️ Five women with persistent LC symptoms were evaluated at an hEDS/HSD clinic.
All met Beighton score criteria for hypermobility.
➡️ 4 diagnosed with hEDS, 1 with HSD
➡️ 3 had dysautonomia
None had prior hypermobility diagnoses. 1/
All patients carried MTHFR polymorphisms (C677T or A1298C)—recently linked to hEDS/HSD.
➡️ Several also showed features of mast cell activation, suggesting immune dysregulation may unmask latent connective tissue disorders after SARS-CoV-2 infection.
➡️ Targeted management (physical therapy, methylfolate/B12, mast cell stabilization, pain interventions) led to clinical improvement in all cases.
🔑 Takeaway: Consider hEDS/HSD in women with refractory Long COVID, especially with multisystem pain and dysautonomia. 2/
This case series suggests that some patients with severe, persistent #LongCOVID—especially women—may have previously undiagnosed hypermobility disorders (hEDS/HSD).
➡️ Five women with refractory LongCOVID symptoms were found to meet criteria for hypermobility, often with dysautonomia, mast cell–related features, and MTHFR polymorphisms.
➡️ Targeted management led to clinical improvement, highlighting the need to consider hEDS/HSD in patients with intractable Long COVID symptoms. 3/