🔥 Matt Dancho (Business Science) 🔥 Profile picture
Aug 27 9 tweets 3 min read Read on X
Logistic Regression is the most important foundational algorithm in Classification Modeling.

In 2 minutes, I'll crush your confusion.

Let's dive in: Image
1. Logistic regression is a statistical method used for analyzing a dataset in which there are one or more independent variables that determine a binary outcome (in which there are only two possible outcomes). This is commonly called a binary classification problem.
2. The Logit (Log-Odds):

The formula estimates the log-odds or logit. The right-hand side is the same as the form for linear regression. But the left-hand side is the logit function, which is the natural log of the odds ratio. The logit function is what distinguishes logistic regression from other types of regression.Image
3. The S-Curve:

Logistic regression uses a sigmoid (or logistic) function to model the data. This function maps any real-valued number into a value between 0 and 1, making it suitable for a probability estimation. This is where the S-curve shape comes in. Image
4. Why not Linear Regression?

The shape of the S-curve often fits the binary outcome better than a linear regression. Linear regression assumes the relationship is linear, which often does not hold for binary outcomes, where the relationship between the independent variables and the probability of the outcome is typically not linear but sigmoidal (S-shaped).Image
5. Coefficient Estimation:

Like linear regression, logistic regression calculates coefficients for each independent variable. However, these coefficients are in the log-odds scale.
6. Coefficient Interpretation (Log-Odds to Odds):

Exponentiating a coefficient converts it from log odds to odds. For example, if a coefficient is 0.5, the odds ratio is exp(0.5), which is approximately 1.65. This means that with a one-unit increase in the predictor, the odds of the outcome increase by a factor of 1.65.
Want to become a Generative AI Data Scientist in 2025 ($200,000 career)?

On Wednesday, Sept 3rd, I'm sharing one of my best AI Projects: How I built an AI Customer Segmentation Agent with Python

Register here (limit 500 seats): learn.business-science.io/ai-registerImage
That's a wrap! Over the next 24 days, I'm sharing the 24 concepts that helped me become an AI data scientist.

If you enjoyed this thread:

1. Follow me @mdancho84 for more of these
2. RT the tweet below to share this thread with your audience

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with 🔥 Matt Dancho (Business Science) 🔥

🔥 Matt Dancho (Business Science) 🔥 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @mdancho84

Aug 27
Understanding P-Values is essential for improving regression models.

In 2 minutes, I'll crush your confusion. Image
1. The p-value:

A p-value in statistics is a measure used to assess the strength of the evidence against a null hypothesis.
2. Null Hypothesis (H₀):

The null hypothesis is the default position that there is no relationship between two measured phenomena or no association among groups. For example, under H₀, the regressor does not affect the outcome.
Read 15 tweets
Aug 25
This guy built an entire AI Data Science Team in Python.

100% Open Source

This is how to get it (for FREE) 🧵 Image
1. What is it?

An AI-powered data science team of agents to help you perform common data science tasks 10X faster.
It has AI agents that can help with:

- Churn Modeling
- Employee Attrition
- Lead Scoring
- Insurance Risk
- Credit Card Risk Image
Read 8 tweets
Aug 24
Data scientists are OUT.

The Generative AI Data Scientist is IN.

This is why (and how you can make the transition): 🧵 Image
Companies are sitting on mountains of unstructured data.

PDF
Word docs
Meeting notes
Emails
Videos
Audio Transcripts

This is useful data. But it's unusable in its existing form. Image
The AI data scientist builds the systems to analyze information, gain business insights, and automates the process.

- Models the system
- Use AI to extract insights
- Drives predictive business insights

Want to become a Generative AI Data Scientist in 2025? Image
Read 6 tweets
Aug 22
This 277-page PDF unlocks the secrets of Large Language Models.

Here's what's inside: 🧵 Image
Chapter 1 introduces the basics of pre-training.

This is the foundation of large language models, and common pre-training methods and model architectures will be discussed here. Image
Chapter 2 introduces generative models, which are the large language models we commonly refer to today.

After presenting the basic process of building these models, you explore how to scale up model training and handle long texts. Image
Read 10 tweets
Aug 20
Stop Prompting LLMs.
Start Programming LLMs.

Introducing DSPy by Stanford NLP.

This is why you need to learn it: Image
1. Why DSPy?

DSPy is the open-source framework for programming—rather than prompting—language models.

It allows you to iterate fast on building modular AI systems.
2. Modules that express AI programmer-centric way

To build enterprise-grade AI, you need to be able to build modular codebases.

DSPy makes it easy to create these LLM tasks modularly. Image
Read 7 tweets
Aug 19
Is data cleaning time-consuming?

This is how I went from 3 hours to 5 seconds: Image
Data cleaning is one of those parts of the data science process that can take 3+ hours.

So in December, I decided to make an AI agent that cleans data for me.

This is what I made: Image
Then I did something crazy.

I open-sourced my data cleaning agent so everyone can benefit.

You can grab it here: github.com/business-scien…Image
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(