Dr. Phil Metzger Profile picture
Dec 3, 2017 15 tweets 4 min read Read on X
Another story on forgotten requirements in the space program. During NASA’s Constellation program, we all knew the Apollo Lunar Modules had a requirement that they couldn’t land on terrain more sloped than 11 degrees. (Or was it 10.5? I’m no longer sure.) But nobody knew why. 1/n
2/n Even the lead designer for the Altair lunar lander told me that he didn’t know why Apollo Lunar Landers had that requirement, although he knew that it was in fact their requirement. It was another requirement whose rationale was long lost in the mists of time.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Dr. Phil Metzger

Dr. Phil Metzger Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @DrPhiltill

Jul 18
A little background. The earlier version of this mission was the Resource Prospector Mission. When Jim Bridenstine was appointed NASA Administrator, NASA cancelled it without his permission just hours before he was sworn in. I can’t confirm this, but rumors say he was livid! /1
2/ Mr. Bridenstine was appointed by Pres. Trump, and the Trump Transition Team had people assigned to plan space policy. They were calling people for input. I got one such call and the person told me they not only WEREN’T going to cancel Resource Prospector, but instead…
3/ …they were thinking about having MANY Resource Prospector missions. We talked about what would be the scientific, engineering, and economic value of building multiple copies of the mission. There was strong interest in the lunar ice to support building a sustainable program.
Read 17 tweets
Jun 22
Ok, here’s a little thread of some of the recent, awesome fluid dynamics content on here.

1. Checkout the computer modeling of airflow over an aircraft!

1/N
2. Vortices made visible by water vapor

/2
3. Just awesome! Look how the rings pull each other toward the end.
Read 14 tweets
Jun 12
Four other problems with landing on a flat pad, even if it is a steel with water deluge.

(I’m assuming the larger size of the Super Heavy booster is why they can’t use flat concrete like ordinary booster landings.)

The four problems: … /1
1/ You need enough surface area around the base of the rocket for the gas to flow out, or the engines will choke. Imagine a cylinder extended below the rocket to the ground. The exterior of that cylinder must exceed the exit area of all the rocket nozzles that are firing. Image
2/ With more engines firing you would need longer legs to keep that area large enough. If not, then the flow will choke meaning it goes subsonic and super high temperature and pressure, comparable to inside the combustion chamber, which can destroy the nozzles or engines.
Read 9 tweets
Jun 10
If I had to guess it would be this: same exact material as the existing tiles but just a wee bit thicker. Here is why…

1/N
2/ Here is what they look like on the inside. They are something like 98% empty space, and the rest is a glass fiber. The fibers touch each other along small contacts, so thermal conductivity is very low. (The scale bar is 100 microns, or 0.1 millimeter.)
Image
Image
3/ This is an extreme case of a “granular material” where the grains are long fibers. I did research on shuttle tiles when I worked in a physics lab at NASA, and I did research on thermal conductivity through granular materials, so I can report something interesting about this. Image
Read 14 tweets
Jun 4
This was the same reaction the science team had during the Apollo program — surprise that bone-dry soil could have so much cohesion! See the clods in the footpad image, especially. Short 🧵 1/N
2/ Closeup image of the clods. These are likely very porous, low density clods — very fluffy material — that will easily fall apart between your fingers. Yet they are in blocky shapes somehow held together as the footpad impacted and disrupted the ground. Image
3/ The first hint of this came from the famous boot print made by @TheRealBuzz. Scientists’ jaws dropped when they saw the clean, vertical sidewalls of this print in such dry, fluffy material! How could the sidewalls stand straight without any moisture?! Image
Read 18 tweets
Apr 28
Untrue. This does touch on something related that actually happened, which people have apparently distorted and used to prop up the dumb conspiracy theory. I will explain… 1/N
2/ First I’ll tell you what I know about the videos, then the telemetry.

When I analyzed the plume effects of the lunar landings, starting in the late 1990s and early 2000s, I tracked down the original data. One of the guys on my team worked with Houston to get the videos.
3/ The originals had been converted to digital and this was more convenient for us to use, since we wouldn’t need reel-to-reel NTSC video equipment, so this is what we got. I had high resolution copies of all the landing videos. There was no lost video. It all exists.
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(