Madeline Lancaster Profile picture
Developmental neurobiologist using cerebral #organoids to study brain size and evolution. Opinions my own.
Jan 21, 2022 9 tweets 5 min read
New Lancaster lab publication out in @Nature! This was all @Dabrica’s idea and due to her ingenuity and hard work, with help from @ChiaradiaIlaria, @laupellegrini, and Alex Kalinka. Check it out and see our🧵below!

rdcu.be/cFi7f Male and female brains differ in their total brain volume. They also show differential susceptibility for some neuropsychiatric disorders. We sought to explore the developmental origin of these differences by generating brain #organoids from male and female stem cell lines.
Oct 27, 2021 9 tweets 4 min read
I'm thrilled to share our latest published paper in @eLife
where we applied cryo-EM to brain organoids to look at ultrastructure of human axons with unprecedented resolution!

Check out the lovely cryo-CLEM clip below.
And a short 🧵 of what we found.

elifesciences.org/articles/70269 First off, we established a method to culture our air-liquid interface organoid cultures with EM grids to get outgrowth of axon bundles onto the grids. This enables capture of "clean" axons without dendrites like you normally get with cells in vitro.
Mar 24, 2021 10 tweets 4 min read
📢New Lancaster Lab paper out now! Check it out, we've discovered a cool way evolution has played with cell shape to make our brains BIG! 🧵 cell.com/cell/fulltext/… This is a question I've been interested in since starting my lab 6 years ago. And so this paper is a really big deal for me and the lab! So where to start...
We know that the human brain is about 3 times bigger than chimps' and gorillas' but why? How?
Aug 22, 2020 11 tweets 3 min read
New preprint from the lab. We’ve joined the fight, and looked at tropism of the virus causing #COVID19 in the brain. Great collaboration with @AnnaAlbecka and Leo James group. Here’s a breakdown of what we find. 🧵

biorxiv.org/content/10.110… We first look at expression of the viral receptors in human brain organoids and find not much expression, at least at the RNA level, in neural cells. BUT interestingly we find a lot of expression in the choroid plexus. So... what’s the choroid plexus you say?