Exploring theories of everything, consciousness, Ai, and God. *NEW EARLY ACCESS EPISODES*: https://t.co/Kk9bXvF22W
For business inquiries: toe@indiefilmto.com
Jan 12 • 10 tweets • 3 min read
"Everything is a Lagrangian submanifold..." Forget particles. Forget waves. Alan Weinstein quipped that the universe is built from something entirely different: Lagrangian submanifolds. What are those, and why should you care? To grasp Lagrangian submanifolds, you first need to know about phase space… (1/10)
Usually people say phase space (incorrectly) when they actually mean “state space” so lets' define this phase space. It's an abstract space (not spacetime) where each point represents a particle's state is given by its position (q) and momentum (p). So, phase space is a space of (q, p) pairs. You can extend this to N particles, of course. (2/10)
Dec 22, 2024 • 7 tweets • 2 min read
The canonical quantization you're taught -- replace {f,g} with [f,g]/iℏ -- is, well, ill-defined. You can always add a classical 0 that becomes non-zero quantumly (thanks to non-commutation). But there's another way: geometric quantization. (1/7)
It all starts w/ symplectic geometry. Think of a classical phase space, but forget coordinates for the moment. What you require is something called a symplectic form -- a closed, non-degenerate 2-form, ω... (2/7)