Engineer exploring the world of investing. Author of the investing blog https://t.co/vKZMEyYyM2
Aug 22 • 9 tweets • 2 min read
1/9
I just finished an excellent book ’Advanced Portfolio Management: A Quant's Guide for Fundamental Investors’ by @__paleologo
The book is intended mainly for fundamental managers to help them express their ideas as portfolios. 2/9
I’m not a fundamental manager and have no alpha, but being a quant enthusiastic, this book provided a lot of food for thought and ignited some thought processes which now keep seeking their way up to the active tasks list.
Jan 21, 2023 • 12 tweets • 5 min read
1/
🧵How much skill (alpha) a concentrated stock picker needs to beat a fully diversified benchmark index?
Variance lowers expected geometric return. To compensate for the idiosyncratic variance drag, stock picker needs skill to catch up with and to exceed the index return.
2/
We:
- Consider geometric (instead of arithmetic) returns
- Assume continuously compounded returns, equally weighted portfolios & similar volatility for portfolios of equal size
- Completely ignore the risk reduction aspect of diversification and focus only on expected returns
Jan 5, 2023 • 36 tweets • 14 min read
1/23
🧵 The importance of diversification increases with time
In the absence of stock picking skill, compound wealth of a typical poorly diversified portfolio loses to compound wealth of a fully diversified benchmark the more the longer the time horizon.
2/
Probably the best known phrase in finance is ”diversification is a free lunch” by Markowitz.
This is true for annualized arithmetic (single period, no compounding) returns, for which mean remains constant while spread of returns narrows with diversification.
Nov 26, 2022 • 15 tweets • 5 min read
1/15
🧵 Consider a parameter-clairvoyant Kelly investor
The clairvoyant can borrow at risk-free rate, is immune to margin calls and can foresee two parameters for the next ten years: Sharpe ratio and volatility.
Having this gift, he can optimize leverage to maximize his CAGR.
2/
CAGR is maximized at full Kelly allocation, i.e. when portfolio’s volatility (fs) = Sharpe ratio (SR). f = leverage multiplier, s = volatility at 100% allocation.
[Note that Kelly use continuously compounded growth rate g = ln(1 + CAGR). Both g and CAGR max at full Kelly]
Kansainvälinen hajauttaminen toimii – kun sille antaa aikaa.
Korrelaatiot määrittävät hajautushyödyn ja markkinoiden väliset korrelaatiot ovat tunnetusti korkeita etenkin kriiseissä.
Totta lyhyellä aikavälillä, mutta korrelaatiot pienenevät sijoitushorisontin pidentyessä.
2/11
”Global EW” portfolio koostuu viidestä maantieteellisestä alueesta tasapainoin välillä Jul/1990 - May/2022.
Alueiden keskinäiset korrelaatiot pienenevät ajan myötä poislukien “Emerging Markets” (EM) ja “Asia Pacific excluding Japan”, jotka korreloivat lähes täydellisesti.
Jun 30, 2022 • 7 tweets • 3 min read
1/7
For geometric returns, idiosyncratic risk is not only uncompensated but costly. The cost is lower expected growth rate (g).
Portfolio g - single stock g = Diversification Premium (DP). DP ≈ f^2*IVar_diff/2. f = leverage & IVar_diff = idiosyncratic variance difference. 2/7
Diversification not only lower risk, but increase geometric expected return particularly with leverage.
Essentially diversification increase Sharpe ratio (SR). Higher SR imply higher g-capacity and expanded opportunity set for rational compounder.
1/ Miten indeksiin sijoittava selvännäkijä määrittäisi sijoitusasteensa?
Selvännäkijällä on kyky nähdä tulevaisuuteen 10 vuoden periodille kaksi parametria: Sharpe ratio ja volatiliteetti, ei muuta. Näillä tiedoilla voidaan valita tuoton maksimoiva sijoitusaste.
#sijoittaminen2/ @hkeskiva ketju käteisen optioarvosta innosti tutkimaan mikä voisi olla sijoitusaseen optimi pitkällä aikavälillä.
Yritänkin myös tässä ketjussani tutkia CAPEn kykyä ennustaa optimaalinen sijoitusaste.