Excited to join the team of and contribute to @trustworthy_ml handle. We will be covering the latest developments and research in "Trustworthy ML" regularly. Follow us and don't forget to tag @trustworthy_ml if you want us to tweet about your work.
One of the goals of our @trustworthy_ml handle is to provide visibility to the work of researchers who are new to the field. Please RT widely & follow @trustworthy_ml. Don't forget to tag us if you want us to tweet about your work! @black_in_ai@_LXAI@QueerinAI@icmlconf
We are currently covering trustworthy ML papers being presented at @icmlconf. Excited to collaborate with @JaydeepBorkar and @sbmisi to curate content and ensure that we keep our followers up-to-date with the latest on fairness/explainability/causality/privacy/ethics.
As we increasingly rely on #LLMs for product recommendations and searches, can companies game these models to enhance the visibility of their products?
Our latest work provides answers to this question & demonstrates that LLMs can be manipulated to boost product visibility!
Joint work with @AounonK. More details👇 [1/N]
@AounonK @harvard_data @Harvard @D3Harvard @trustworthy_ml LLMs have become ubiquitous, and we are all increasingly relying on them for searches, product information, and recommendations. Given this, we ask a critical question for the first time: Can LLMs be manipulated by companies to enhance the visibility of their products? [2/N]
This question has huge implications for businesses: the ability to manipulate LLMs to enhance product visibility gives vendors a considerable competitive advantage and has the potential to disrupt fair market competition [3/N]
Regulating #AI is important, but it can also be quite challenging in practice. Our #ICML2023 paper highlights the tensions between Right to Explanation & Right to be Forgotten, and proposes the first algorithmic framework to address these tensions arxiv.org/pdf/2302.04288… [1/N]
@SatyaIsIntoLLMs@Jiaqi_Ma_ Multiple regulatory frameworks (e.g., GDPR, CCPA) were introduced in recent years to regulate AI. Several of these frameworks emphasized the importance of enforcing two key principles ("Right to Explanation" and "Right to be Forgotten") in order to effectively regulate AI [2/N]
While Right to Explanation ensures that individuals who are adversely impacted by algorithmic outcomes are provided with an actionable explanation, Right to be Forgotten allows individuals to request erasure of their personal data from databases/models of an organization [3/N]
Our group @ai4life_harvard is gearing up for showcasing our recent research and connecting with the #ML#TrustworthyML#XAI community at #NeurIPS2022. Here’s where you can find us at a glance. More details about our papers/talks/panels in the thread below 👇 [1/N]
@ai4life_harvard [Conference Paper] Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations (joint work with #TessaHan and @Suuraj) -- arxiv.org/abs/2206.01254. More details in this thread
One of the biggest criticisms of the field of post hoc #XAI is that each method "does its own thing", it is unclear how these methods relate to each other & which methods are effective under what conditions. Our #NeurIPS2022 paper provides (some) answers to these questions. [1/N]
In our #NeurIPS2022 paper, we unify eight different state-of-the-art local post hoc explanation methods, and show that they are all performing local linear approximations of the underlying models, albeit with different loss functions and notions of local neighborhoods. [2/N]
By doing so, we are able to explain the similarities & differences between these methods. These methods are similar in the sense that they all perform local linear approximations of models, but they differ considerably in "how" they perform these approximations [3/N]
Explainable ML is a rather nascent field with lots of exciting work and discourse happening around it. But, it is very important to separate actual findings and results from hype. Below is a thread with some tips for navigating discourse and scholarship in explainable ML [1/N]
Overarching claims: We all have seen talks/tweets/discourse with snippets such as "explanations dont work" or "explanations are the answer to all these critical problems". When we hear such claims, they are often extrapolating results or findings from rather narrow studies. [2/N]
When we hear overarching claims, it is helpful to step back/ask what is the evidence to back such claims? which studies are such claims being based on? what is the context/application? how were the studies carried out? how reasonable is it to extrapolate these claims? [3/N]
Excited to share our @AIESConf paper "Does Fair Ranking Improve Outcomes?: Understanding the Interplay of Human and Algorithmic Biases in Online Hiring". We investigate if fair ranking algorithms can mitigate gender biases in online hiring settings arxiv.org/pdf/2012.00423… [1/n]
More specifically, we were trying to examine the interplay between humans and fair ranking algorithms in online hiring settings, and assess if fair ranking algorithms can negate the effect of (any) gender biases prevalent in humans & ensure that the hiring outcomes are fair [2/n]
We found that fair ranking algorithms certainly help across all job contexts, but their effectiveness in mitigating gender biases (prevalent in online recruiters) heavily depends on the nature of the job. [3/n]