#Python factlet: The len() function insists that the corresponding __len__() method return a value x such that:

0 ≤ x.__index__() ≤ sys.maxsize

* 3.0 and '3' don't have an __index__ method.
* -1 is too small.
* sys.maxsize+1 is too big.

1/
You could call __len__() successfully, but the len() function fails:

class A:
def __len__(self):
return -1

>>> a = A()

>>> a.__len__()
-1

>>> len(a)
...
ValueError: __len__() should return >= 0

2/
Classes written in C typically implement __len__() with the mp_length or sq_length slot. That constrains them to sys.maxsize limits:

>>> r = range(10**100)
>>> r.__len__()
Traceback (most recent call last):
...
OverflowError: Python int too large to convert to C ssize_t

3/
The upshot is that random's choice() function is size constrained because it calls len(seq):

>>> choice(range(10**100))
...
OverflowError: Python int too large to convert to C ssize_t

Meanwhile randrange() works fine because len() isn't called:

>>> x = randrange(10**100)

4/

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Raymond Hettinger

Raymond Hettinger Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @raymondh

2 Jan
@yera_ee Each way has its advantages.

With dataclasses, you get nice attribute access, error checking, a name for the aggregate data, and a more restrictive equality test. All good things.

Dicts are at the core of the language and are interoperable with many other tools: json, **kw, …
@yera_ee Dicts have a rich assortment of methods and operators.
People learn to use dicts on their first day.
Many existing tools accept or return dicts.
pprint() knows how to handle dicts.
Dicts are super fast.
JSON.
Dicts underlie many other tools.
@yera_ee Embrace dataclasses but don't develop an aversion to dicts.

Python is a very dict centric language.

Mentally rejecting dicts would be like developing an allergy to the language itself. It leads to fighting the language rather than working in harmony with it.
Read 4 tweets
27 Dec 20
1/ #Python tip: Override the signature for *args with the __text_signature__ attribute:

def randrange(*args):
'Choose a random value from range(start[, stop[, step]]).'
return random.choice(range(*args))

randrange.__text_signature__ = '(start, stop, step, /)'
2/ The attribute is accessed by the inspect module:

>>> inspect.signature(randrange)
<Signature (start, stop, step, /)>
3/ Tooltips and help() will now be more informative:

>>> help(randrange)
randrange(start, stop, step, /)
Choose a random value from range(start[, stop[, step]]).
Read 4 tweets
25 Oct 20
1/ #Python tip: The functools.cache() decorator is astonishingly fast.

Even an empty function that returns None can be sped-up by caching it. 🤨

docs.python.org/3/library/func…
2/ Here are the timings:

$ python3.9 -m timeit -r11 -s 'def s(x):pass' 's(5)'
5000000 loops, best of 11: 72.1 nsec per loop

$ python3.9 -m timeit -r11 -s 'from functools import cache' -s 'def s(x):pass' -s 'c=cache(s)' 'c(5)'
5000000 loops, best of 11: 60.6 nsec per loop
3/ Behind the scenes, there is a single dictionary lookup and a counter increment.

Some kinds arguments will take longer to hash, but you get the idea, @cache has very little overhead.
Read 5 tweets
6 Sep 20
1/ #Python data science tip: To obtain a better estimate (on average) for a vector of multiple parameters, it is better to analyze sample vectors in aggregate than to use the mean of each component.

Surprisingly, this works even if the components are unrelated to one another.
2/ One example comes from baseball.

Individual batting averages near the beginning of the season aren't as good of a performance predictor as individual batting averages that have been “shrunk” toward the collective mean.

Shockingly, this also works for unrelated variables.
3/ If this seems unintuitive, then you're not alone. That is why it is called Stein's paradox 😉

The reason it works is that errors in one estimate tend to cancel the errors in the other estimates.

statweb.stanford.edu/~ckirby/brad/o…
Read 5 tweets
31 Aug 20
Another building block for a #Python floating point ninja toolset:

def veltkamp_split(x):
'Exact split into two 26-bit precision components'
t = x * 134217729.0
hi = t - (t - x)
lo = x - hi
return hi, lo

csclub.uwaterloo.ca/~pbarfuss/dekk…
Input: one signed 53-bit precision float

Output: two signed 26-bit precision floats

Invariant: x == hi + lo

Constant: 134217729.0 == 2.0 ** 27 + 1.0
Example:

>>> hi, lo = veltkamp_split(pi)
>>> hi + lo == pi
True
>>> hi.hex()
'0x1.921fb58000000p+1'
>>> lo.hex()
'-0x1.dde9740000000p-26'

Note all the trailing zeros and the difference between the two exponents. Also both the lo and hi values are signed.
Read 6 tweets
9 Aug 20
#Python tip: #hypothesis is good at finding bugs; however, often as not, the bug is in your understanding of what the code is supposed to do.

1/
Initial belief: The JSON module is buggy because #hypothesis finds cases that don't round-trip.

Bugs in understanding:
* The JSON spec doesn't have NaNs
* A JSON module feature is that lists and tuples both serialize into arrays but can't be distinguished when deserialized.

2/
Initial belief:The colorsys module is buggy because #hypothesis finds conversions that don't round-trip

Bugs in understanding:
* color gamuts are limited
* colors in one gamut may not be representable in another
* implementations are constrained by underlying specifications

3/
Read 9 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!