For developers, a good debugger and profiler are fundamental tools for their productivity.

On the ML world, TensorBoard can help you with that by enabling:

- Visualizing metrics, model, histograms of weights or biases
- Displaying images, text and audio data
- Profiling

1/5🧵
You can load TensorBoard directly on Colab using a magic word to load the extension and another one to load the tool.

The nice part is that this does not require installing anything on your computer.

2/5🧵
To visualize your training data, you'll need to create a callback and use it on the fit method.

The callback just needs the directory where the log will be written.

3/5🧵
If you want to share your results with other researchers/friends/co-workers, you can upload your logs to TensorBoard.dev

This enables others to use your model and also to replicate experiments more easily.

You can upload your logs straight from colab.

4/5🧵
You can follow the full example here tensorflow.org/tensorboard/ge… and try multiple other features.

A cool feature that you can try is the Embedding Projector here: tensorflow.org/tensorboard/te…

5/5

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Luiz GUStavo

Luiz GUStavo Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @gusthema

18 Jan
Machine Learning models can be classified regarding how much human supervision they need.

This affects the algorithms used and the types of tasks that it can solve.

You can categorize Machine Learning models in 4 major categories:

1/5🧵 #ML #MondayMotivation
Supervised Learning is when you train a model from the input data and ALL their corresponding labels.

Examples of
- Tasks: classification and regression
- Algorithms: kNN, Linear and Logistic regression, SVM, Decision Tree, Neural Networks(*)

2/5🧵
Unsupervised Learning is when you use unlabelled data to train your model.

Examples of
- Tasks: Clustering, Anomaly Detection, Visualization and Dimension reduction, Association rule
- Algorithms: K-means, PCA, DBSCAN

3/5🧵
Read 5 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!