APS-DBIO Profile picture
15 Apr, 11 tweets, 4 min read
@taekjip is taking over @ApsDbio today to run a tweetorial titled 'single is good but a couple is better'.
Single molecule methods are allowing direct detection of subpopulations & dynamics, and correlation between multiple observables, with rapidly rising popularity. Technical milestones in single molecule fluorescence can be seen here.
Many flavors of single molecule methods. (1) fluorescence (2) mechanical (3) electrical & (4) in silico. All four have been honored by Nobel prizes in physics, chemistry and physiology.
For example, the ability to detect single fluorophores is crucial to super-resolution microscopy and single molecule long-read sequencing via zero mode waveguide. See this cool discovery of actin rings in neurons.
Optical traps can also reveal how flexible DNA is and how quickly it relaxes.
But, going beyond one molecule, one fluorophore or one flavor of single molecule methods can be rewarding. Hence, single is good but a couple is better. As a reminder, you are not fully vaccinated until you get your second shot!
Single molecule FRET uses dipole-dipole interaction between two fluorophores of different color to infer their relative distance. If you know where in the protein the labels are attached, you can deduce conformational dynamics. See this illustration by Harold Kim.
Moving from a single optical trap to dual optical traps can dramatically improve precision, even allowing us to detect single base pair steps by an RNA polymerase.
Combining optical trap with single molecule fluorescence can reveal correlation between multiple observables, for example ATP binding and myosin powerstroke as shown here.
You can even combine ultrahigh resolution dual optical traps with single molecule FRET. See this illustration of ‘fleezers’ by Matt Comstock.
Now a question for you. Can we do something equivalent in single cell studies? Study interaction between two cells in high throughput for example. Regardless, Iet's celebrate single molecule biophysics but better things are ahead when we form a couple. 10/10

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with APS-DBIO

APS-DBIO Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ApsDbio

8 Apr
It’s Tweetorial Thursday, so time for a #DBIOtweetorial, brought to you by the fantastic #engageDBIO team! Guest this week @SulianaManley, on why there is “No free lunch in microscopy”
For biophysicists, microscopy is a major tool and an exciting outlet for innovation. If you are a microscopy user more than a developer, it can seem like a major new method is published every week! Even just considering localization microscopy ...
So, how do we make sense of all this method development, and what is driving it? Sometimes developers chase world records in spatial resolution, temporal resolution, depth, or long-term imaging.
Read 9 tweets
1 Apr
It's Thursday and time for a #DBIOtweetorial commissioned by the awesome folks at #engageDBIO!
Like a city, inside of the cell is organised by highways and roads (microtubules, actin), motors (dynein, kinesins, myosins) cargoes (e.g. receptors in endosomes, viruses) post-offices sorting cargoes (sorting endosomes), garbage clean-up (autophagosomes, lysosomes) and much more
Every piece of the puzzle listed above is a field on its own! We now know about the exquisite dynamics of microtubules, or how motors move. We know about the process of endocytosis at the plasma membrane and proteins that define distinct endosomal populations (Rabs)
Read 11 tweets
25 Mar
It's a beautiful thursday! time for a #DBIOtweetorial commissioned by the awesome folks at #engageDBIO!
First up: “this feather star has too many arms and is too heavy to swim – instead it creeps along the seafloor”

How goes this amazing creature coordinate so many appendages? what kind of physics does it encounter?
When discussing limb coordination, it's probably easier to define what we mean by coordination than 'limb'...
doi.org/10.1038/44416

You might recognise this famous image of '#synchronization', referred to by Huygens as 'an odd kind of sympathy' (1665)

jstor.org/stable/4027017…
Read 11 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!