How long does immunity to SARS-CoV-2 last (and how long might it last in future)? A few thoughts... 1/
We now have data from several cohort studies showing responses can last over a period of several months at least. E.g. "Based on data currently available, a rapid decline of SARS-CoV-2 IgG seropositivity or neutralising capacity has not been seen." thelancet.com/journals/lanin… 2/
And "immune memory in three immunological compartments remained measurable in greater than 90% of subjects for more than 5 months after infection" science.sciencemag.org/content/371/65… 3/
And "A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection." thelancet.com/journals/lance… 4/
One of the issues with interpreting apparent 'waning' in studies last year was cutoffs for a 'positive' test were often based on more severe cases, which means they were less good at assessing antibody dynamics following milder infections: medrxiv.org/content/10.110… 5/
In discussion of 'waning', also need to remember (given what we know about flu & other coronaviruses) that immunity against similar viruses may be long-lasting, but evolution leads to variants against which immunity is less effective:
In summary, we have promising data on persistence of post-infection immunity, which bodes well for COVID vaccines against they viruses they were designed for. For me the biggest concern is potential for evolution, which may well necessitate future vaccine updates... 7/
But let's be careful to not undermine the very useful tools we have while we talk about the possibility of future challenges. 8/8
• • •
Missing some Tweet in this thread? You can try to
force a refresh
A reminder that to estimate COVID vaccine effectiveness, we need to compare risk in unvaccinated and vaccinated groups in same population. Here are a couple of common mistakes to watch out for... 1/
You can't get an estimate of effectiveness by simply comparing how many people have been vaccinated and how many cases/hospitalisations there have been in this group (because, of course, if there's no local COVID transmission, you'd always estimate a 100% effective vaccine). 2/
Nor can you just look at what proportion of cases have been vaccinated, because effectiveness will also depend on what proportion of the population have been vaccinated. 3/
There’s still uncertainty about how much protection various COVID vaccines give against certain variants of concern (e.g. B.1.351 identified in SA & P.1 in Brazil). So where will new real-life evidence on vaccine effectiveness against variants come from? A few thoughts...1/
First we need to be clear what type of protection we're talking about (see below:
) – protection against infectiousness will shape transmission dynamics, whereas protection against severe disease will influence outcomes like hospitalisations and deaths. 2/
Much of the evidence to date about different forms of protection against variants has come either from lab studies of immune responses or secondary data from vaccine trials. Both are useful, but also have some limitations... 3/
If populations are highly vaccinated, we'd expect a higher proportion of future cases to have been previously vaccinated (because by definition, there aren't as many non-vaccinated people around to be infected). But what sort of numbers should we expect? A short thread... 1/
In above question, there are a lot of things happening conditional on other things happening (e.g. probability cases have been vaccinated), which means we can use Bayes rule (en.wikipedia.org/wiki/Bayes%27_…) to work out the proportion of cases that we'd expect to have been vaccinated. 2/
If we want to know the probability of event A given event B, or P(A|B) for short, we can calculate this as
P(A|B) = P(B|A) P(A)/ P(B)
There are a couple more mathsy tweets coming up, so hold on as then we'll get back to the real-life implications. 3/
The debate around tracking infection/vaccine status for events is reminiscent of last year’s debate around privacy & contact tracing apps. Ultimately, the better countries' ability to track where infection is/isn’t, the lower their COVID risk will be. 1/
If people don’t want to collect/use data in this way, they need to accept the trade off will be a higher COVID risk in the community (or more disruptive measures to prevent that risk). 2/
Many countries have implicitly chosen to introduce stay-at-home orders or live with higher numbers of cases rather than use detailed surveillance (e.g. to identify infections linked to superspreading events or enforce quarantine). 3/
This is an interesting perspective on Taiwan (& glad it mentions data/privacy), although I'd like to see more references to what local officials were actually saying about approach in real-time, rather than what UK-based researchers later say it was: theguardian.com/world/2021/mar… 1/
E.g. from April 2020: "Covid-19 is becoming flu-like. It means that since it is highly contagious with many mild or asymptomatic cases, and can be transmitted through droplets and contaminated areas, we won’t get rid of this virus totally." telegraph.co.uk/global-health/… 2/
Taiwan has implemented several innovative, effective measures against COVID-19, but it will harm our ability to plan for the next pandemic if we don't look fully at how countries were interpreting - and acting on - available evidence in real-time. 3/
Is “we couldn’t have predicted the emergence of B117” a scientifically accurate statement? 1/
I’d argue it depends whether statement is interpreted in general or specific terms. “We couldn’t have predicted the possibility of a phenotypically distinct SARS-CoV-2 variant” is clearly inaccurate (given some adapation would have been involved in its original emergence)... 2/
...but “we couldn’t have predicted a variant emerging when it did in autumn 2020 with B117’s specific characteristics” is entirely reasonable (especially as our knowledge of its characteristics is still developing). 3/