2/5 The second case of B.1.617.2 was from the same county as the first case (Fairfield), but they are unrelated (see tree 👇). Neither cases are known to be linked to international travel.
3/5 B.1.1.7 is still 📈 frequency not because the lineage is rapidly expanding, but because it is dying out slower than the non-B.1.1.7 lineages. So the total number of B.1.1.7 cases 📉 by 87% since late March.
4/5 The total COVID-19 cases in Connecticut are the lowest since early October. I just wanted to say that again 😀🍻
5/5 This would have been possible without the expertise of @JosephFauver who established our sequencing and processing pipelines while we were all trying to put out various fires. I am so grateful for his efforts.
Here he is sequencing one of our first samples in March 2020.
Bonus: Here is an article discussing some of the work that @JosephFauver led using genomic epidemiology to investigate SARS-CoV-2 transmission and evaluate COVID-19 protocols for sports leagues.
Double bonus: @JosephFauver recently received the 2021 Distinguished Service Award from his alma matter @PeruState for providing COVID-19 guidance to the College prepared for fall classes on campus. Well deserved 👏
It's based on a design led by @Scalene & @pathogenomenick originally for Zika virus that was adapted for SARS-CoV-2 ("ARTIC protocol") and used by labs around the world.
Our goal was for this to be plug n' play with current SARS-CoV-2 protocols. (2/8) nature.com/articles/nprot…
The primers were designed using PrimalScheme using a pre-outbreak A.1 clade reference genome (GenBank accession: MT903345).
The scheme comprises a total of 163 primer pairs with an amplicon length ranging between 1597 and 2497 bp (average length of 1977 bp). (3/8)
Using a logistic regression of the daily frequencies, we predict that as of today (July-14), BA.5 is probably 80-90% in Connecticut.
BA.4 is still 📈 as it outcompetes BA.2, but will probably start to 📉 in frequency soon after BA.2 is gone. (2/8)
We created a new dashboard to report variant sequencing data in Connecticut. You can still access it through our main website by clicking on the "Read the latest Connecticut report" link. (3/8)
Omicron BA.2.12.1 is still 📈 in Connecticut as it is across most of the US. Fitting the % of sequenced cases to a logistic growth curve, we estimate that BA.2.12.1:
1⃣ is ~80% frequency today (May019)
2⃣ surpassed 50% in early May
3⃣ may reach 95% in early/mid June
(2/13)
From the same logistic growth curve, we also estimate that BA.2.12.1 is:
➡️ ~24% more transmissible than background (mostly other BA.2 lineages)
➡️ doubling in proportion every ~12 days
(3/13)
Based on our TaqPath PCR data (S-gene detected), we estimate that:
➡️ BA.2 is >50% in Southern Connecticut
➡️ At this rate - BA.2 will be 95% by early April
➡️ BA.2 doubling rate = 7.8 days (BA.1 in December = 3-4 days)
➡️ BA.2 ~43% more transmissible than BA.1/.1
(2/7)
Over the past 4 weeks, all of the sequenced S-gene positive samples have been Omicron BA.2 and not Delta. So we trust the 👆 PCR results reflecting the rise in BA.2. (3/7)
Here are comparative results between 10 TaqPath S-gene detected samples tested by YNHH and with our validated VOC PCR assay. Most with our assay were actually SGTF, and looking at the YNHH results, the S-gene CTs for those were 5-7 higher than N/ORF. (5/16)
We are looking into these low level spike amplification samples that should be SGTF to see if this is a lab/TaqPath assay artifact or if there is something about these BA.1 sequences. So far doesn't seem to be sequence-related. Will report (6/16)
Our initial SGTF case definition – ORF/N <30 CT, S “not detected” - was conservative to not over-call BA.1.
We updated it yesterday to include S-gene 5 CTs higher than ORF/N, and compared the results. (7/16)