Preliminary UK data on vaccine effectiveness against B.1.617.2 (originally detected in India) now available: khub.net/documents/1359…. A few things to note... 1/
First and foremost, it’s another reminder that *second doses matter*. By Aug/Sep, UK will be in much better position against B.1.617.2, but there’s a risk of substantial transmission in meantime as things reopen. 2/
Also remember that when vaccine effectiveness high, small absolute differences can have big effect. E.g. a drop from 95% to 90% would double number at risk (and probably more than double outbreak size given non-linear nature of transmission). 3/
However, confidence intervals wide because early data - don’t put too much weight on single numbers. Worth keeping an eye on other data too (like below for pre-B.1.617.2 period), so can compare age patterns etc. and protection against severe outcomes: gov.uk/government/pub… 4/
Above also highlights importance of good data. The B.1.617.2 analysis used almost 13,000 sequences linked to vaccine status - which means it’s crucial to support global research efforts so we don’t have to wait until problems reach UK for these insights 5/ theguardian.com/global-develop…
Finally, evolutionary dynamics of other coronaviruses (journals.plos.org/plospathogens/…) suggest we are going to face new variants for foreseeable future. But vaccines will make huge difference in reducing risk, so let’s make sure the world has access to them: bbc.com/news/world-571… 6/6
• • •
Missing some Tweet in this thread? You can try to
force a refresh
In real-time, epidemic data streams are patchy, delayed, biased and often contradictory. That's why scientists use terms like 'realistic possibility', 'medium confidence' etc. Uncertainty is inevitable (although will reduce over time) - and yet decisions still need to be made. 1/
B.1.617.2 has been spreading fast in some areas, and people are working hard to disentangle causes & quantify exactly what it means for wider transmission. Control measures are now both going in (e.g. testing, vaccination) & being relaxed, which making analysis even trickier. 2/
Have recently been thinking more about the transmissibility of endemic seasonal coronaviruses... antibody positivity increases sharply at a relatively low age, suggesting high transmissibility in susceptibile populations (below from: nature.com/articles/s4146…). 1/
Older groups have built immunity to seasonal CoVs, but above suggests R0 (i.e. R in fully susceptible population) could be quite high for these viruses. Possibly so high that even stringent measures wouldn't be enough to control in susceptible pop?
One subtlety of below issue that’s worth highlighting – targeted travel bans (as opposed to near-total border closures) have played out in much the way we’d have expected pre-COVID, delaying rather than stopping local epidemics. A few thoughts… 1/
As noted by @firefoxx66 at the time, targeted bans can delay introductions, but this will be of limited use if measures aren’t also in place to deal with (undetected) local circulation:
How long does immunity to SARS-CoV-2 last (and how long might it last in future)? A few thoughts... 1/
We now have data from several cohort studies showing responses can last over a period of several months at least. E.g. "Based on data currently available, a rapid decline of SARS-CoV-2 IgG seropositivity or neutralising capacity has not been seen." thelancet.com/journals/lanin… 2/
And "immune memory in three immunological compartments remained measurable in greater than 90% of subjects for more than 5 months after infection" science.sciencemag.org/content/371/65… 3/
A reminder that to estimate COVID vaccine effectiveness, we need to compare risk in unvaccinated and vaccinated groups in same population. Here are a couple of common mistakes to watch out for... 1/
You can't get an estimate of effectiveness by simply comparing how many people have been vaccinated and how many cases/hospitalisations there have been in this group (because, of course, if there's no local COVID transmission, you'd always estimate a 100% effective vaccine). 2/
Nor can you just look at what proportion of cases have been vaccinated, because effectiveness will also depend on what proportion of the population have been vaccinated. 3/
There’s still uncertainty about how much protection various COVID vaccines give against certain variants of concern (e.g. B.1.351 identified in SA & P.1 in Brazil). So where will new real-life evidence on vaccine effectiveness against variants come from? A few thoughts...1/
First we need to be clear what type of protection we're talking about (see below:
) – protection against infectiousness will shape transmission dynamics, whereas protection against severe disease will influence outcomes like hospitalisations and deaths. 2/
Much of the evidence to date about different forms of protection against variants has come either from lab studies of immune responses or secondary data from vaccine trials. Both are useful, but also have some limitations... 3/