In discussions of Delta in UK & much of Europe, it's worth remembering that to avoid a large number of future COVID-19 cases at this point, countries would need to dramatically curtail social mixing - otherwise they've still got a rising epidemic, just with a flatter peak. 1/
Big difference with UK, of course, is case numbers. Given current case level in UK, if test & trace was suddenly omniscient with full adherence, millions of people would now be in quarantine. In terms of disruptions, it would be somewhat equivalent to a snap ban on gatherings. 3/
Delta cases are rising sharply across Europe and US, even in areas with relatively high vaccination levels, but above indicates how much interruption to social interactions it would take to get case numbers to come down in near future. 4/
One argument put forward for July 19th UK reopening is to bring infections forward to reduce winter wave. To be honest, I’ve always found idea that we could tailor a pandemic to get 'better' sized future waves a bit absurd - whether in spring 2020 or now. A few thoughts... 1/
For me, main issue now is medium term disruption vs medium term epidemic size. Many people now seem OK with R>1 in countries with relatively high vaccination % (at least implicitly, given they aren’t advocating for the strong measures required to guarantee R<1). 2/
Given R>1, much of Europe faces large epidemics likely to end with accumulation of immunity in next few months - much of it from infections. Reopening would accelerate this, but won't be difference between epidemic & no epidemic (unlike, say, reintroducing measures to get R<1) 3/
I've always found it very unhelpful that 'self-isolation' is used to refer to both isolation and quarantine, but the distinction is now becoming increasingly important... 1/
To recap, isolation is for people who are confirmed to be infected; quarantine is for people who currently seem healthy but may be infected. A stay-at-home order is basically a large, untargeted quarantine (some countries even call it 'community quarantine'). 2/
As vaccines reduce infections/transmission, countries are re-evaluating approaches to disruptive quarantine, whether for travellers or contacts of cases (e.g. in US: cdc.gov/coronavirus/20…). However, we need to be careful about jumbling isolation and quarantine together... 3/
Schools, workplaces, pings from COVID app… Having high UK case numbers over summer will have huge implications for quarantine burden. A few thoughts… 1/ bbc.co.uk/news/business-…
Because vaccines reduce onwards transmission, contacts are becoming less risky on average - which means that for a given value of R, each case will typically have far more contacts than they would have had last year. 2/
Under pre-pandemic contact patterns, a typical case will have 25+ contacts while infectious (thelancet.com/journals/lanin…). That’s a lot of people who could potentially be quarantined per case. 3/
Any discussion of daily testing vs quarantine for contacts of cases in schools needs to address the key epidemiological question: if a child in a school tests positive, what do you do next? 1/
Encouraging ventilation etc. to reduce transmission risk is important, but you still have to decide what to do about a positive result. Do you quarantine their contacts or not? 2/
If you decide to abandon quarantine because you think ventilation etc. has sufficiently reduced risk, then this still means accepting higher transmission risk than if quarantine had remained in place. 3/
How long could UK cases continue to rise? And how might hospitalisations increase alongside? A thread... 1/
Despite relatively high vaccination rates compared to other countries, cases are growing and in many areas R is now above 1.5. Remember, immunity is already 'priced in' to this number - without vaccination and the social distancing still in place, R would be *much* higher. 2/
If R is 1.5 and contacts/control remain the same, then we'd need remaining part of the population who could potentially spread COVID to shrink by at least 33% before R drops below 1 & epidemic peaks. This would require additional immunity, either from infections or vaccines. 3/
A common Q: “how can COVID hospitalisations in UK still grow if vaccine % high?” Answer: look at the data. Average was ~120 daily COVID admissions over past week. These would have been infected about 2-3 weeks earlier, when case numbers ~2000 per day. This shows two things... 1/
First, there was still a group at risk of hospitalisation a few weeks ago. And second, this risk was large enough to show up as hundred of admissions in recent data, even though cases were at relatively low levels. 2/
So the key question here: if case numbers were to grow X times larger, why wouldn’t hospitalisations also grow X times larger? 3/