Still see 70% quoted as level of vaccination required for 'herd immunity'. Important to note it's now likely to be much higher. The standard (albeit rough) calculation for herd immunity threshold is (1/E) x (1-1/R) where E is vaccine effectiveness in reducing transmission... 1/
In scenario where R is 6 (plausible for Delta in susceptible populations without any restrictions), and vaccination reduces infection/infectiousness such that onwards transmission reduced by 85%, above calc suggests would need to vaccinate (1-1/6)/0.85 = 98% of population. 2/
If transmission reduction is less than this (which is likely the case for some vaccines against Delta), or R higher, then herd immunity wouldn't be achievable through current vaccines alone. This leads to three possibilities... 3/
If herd immunity through vaccination alone not possible, need to either: A) keep some control measures in place indefinitely, B) prepare for exit wave as measures relaxed, C) update what are already very good vaccines to be even more effective. 4/
For avoidance of doubt – above calculations are for *otherwise fully susceptible population* (i.e. estimating effect of vaccination alone). In populations where there have been large epidemics, this accumulated immunity will reduce level of vaccination required to get R below 1.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
One argument put forward for July 19th UK reopening is to bring infections forward to reduce winter wave. To be honest, I’ve always found idea that we could tailor a pandemic to get 'better' sized future waves a bit absurd - whether in spring 2020 or now. A few thoughts... 1/
For me, main issue now is medium term disruption vs medium term epidemic size. Many people now seem OK with R>1 in countries with relatively high vaccination % (at least implicitly, given they aren’t advocating for the strong measures required to guarantee R<1). 2/
Given R>1, much of Europe faces large epidemics likely to end with accumulation of immunity in next few months - much of it from infections. Reopening would accelerate this, but won't be difference between epidemic & no epidemic (unlike, say, reintroducing measures to get R<1) 3/
In discussions of Delta in UK & much of Europe, it's worth remembering that to avoid a large number of future COVID-19 cases at this point, countries would need to dramatically curtail social mixing - otherwise they've still got a rising epidemic, just with a flatter peak. 1/
Big difference with UK, of course, is case numbers. Given current case level in UK, if test & trace was suddenly omniscient with full adherence, millions of people would now be in quarantine. In terms of disruptions, it would be somewhat equivalent to a snap ban on gatherings. 3/
I've always found it very unhelpful that 'self-isolation' is used to refer to both isolation and quarantine, but the distinction is now becoming increasingly important... 1/
To recap, isolation is for people who are confirmed to be infected; quarantine is for people who currently seem healthy but may be infected. A stay-at-home order is basically a large, untargeted quarantine (some countries even call it 'community quarantine'). 2/
As vaccines reduce infections/transmission, countries are re-evaluating approaches to disruptive quarantine, whether for travellers or contacts of cases (e.g. in US: cdc.gov/coronavirus/20…). However, we need to be careful about jumbling isolation and quarantine together... 3/
Schools, workplaces, pings from COVID app… Having high UK case numbers over summer will have huge implications for quarantine burden. A few thoughts… 1/ bbc.co.uk/news/business-…
Because vaccines reduce onwards transmission, contacts are becoming less risky on average - which means that for a given value of R, each case will typically have far more contacts than they would have had last year. 2/
Under pre-pandemic contact patterns, a typical case will have 25+ contacts while infectious (thelancet.com/journals/lanin…). That’s a lot of people who could potentially be quarantined per case. 3/
Any discussion of daily testing vs quarantine for contacts of cases in schools needs to address the key epidemiological question: if a child in a school tests positive, what do you do next? 1/
Encouraging ventilation etc. to reduce transmission risk is important, but you still have to decide what to do about a positive result. Do you quarantine their contacts or not? 2/
If you decide to abandon quarantine because you think ventilation etc. has sufficiently reduced risk, then this still means accepting higher transmission risk than if quarantine had remained in place. 3/
How long could UK cases continue to rise? And how might hospitalisations increase alongside? A thread... 1/
Despite relatively high vaccination rates compared to other countries, cases are growing and in many areas R is now above 1.5. Remember, immunity is already 'priced in' to this number - without vaccination and the social distancing still in place, R would be *much* higher. 2/
If R is 1.5 and contacts/control remain the same, then we'd need remaining part of the population who could potentially spread COVID to shrink by at least 33% before R drops below 1 & epidemic peaks. This would require additional immunity, either from infections or vaccines. 3/