Nada escapa a un agujero negro, ni siquiera a la luz. La luz extrema que vemos alrededor de estos objetos cósmicos se forma en sus bordes a partir del material que cae, alimentando las fuentes de luz continua más brillantes del universo y formando una corona.
Debido a su enorme gravedad, los agujeros negros deforman el espacio-tiempo de tal manera que es posible ver la luz directamente detrás de ellos. Sin embargo, esto nunca se había observado directamente, hasta ahora. (📸NASA)
Ahora investigadores han visto emisiones de rayos X que vienen directamente detrás del agujero negro supermasivo en el centro de la galaxia I Zwicky 1, a unos 800 millones de años luz de distancia. (📸 Dan Wilkins)
Un fenómeno tan increíble que ha sido predicho durante décadas por la teoría de la relatividad general de Einstein, pero esta es la primera vez que se ve directamente la luz desde detrás de un agujero negro. (📸 agujero negro real/EHT)
Para entenderlo debemos saber que hay varios componentes en el espacio que rodea inmediatamente un agujero negro. Está el horizonte de eventos: el famoso "punto de no retorno", en el que ni siquiera la velocidad de la luz es suficiente para alcanzar la velocidad de escape(📸NASA)
Un agujero negro activo como I Zw 1* también tiene un disco de acreción. Ese es un enorme disco aplanado de polvo y gas que giran en el objeto, como el agua que rodea un desagüe.
Este disco se calienta increíblemente debido a las influencias del campo de fricción y magnético, tan caliente que los electrones son despojados de los átomos, formando un plasma magnetizado.
Justo fuera del horizonte de eventos de un agujero negro activo, dentro del borde interior del disco de acreción, es donde encontramos la corona. Esta es una región de electrones a alta temperatura que se cree que son impulsados por el campo magnético del agujero negro. (📸ESA)
En un agujero negro, la corona actúa como un sincrotrón para acelerar los electrones a energías tan altas que brillan brillantemente en longitudes de onda de rayos X.
Esta luz, que es luz de rayos X, se puede analizar para mapear y caracterizar un agujero negro. La motivación original detrás de esta investigación fue aprender más sobre la corona (📸 Robin Dienel/Carnegie Institution for Science)
Cuando los investigadores estaban estudiándolo vieron una serie de destellos más pequeños. Estos eran los mismos destellos de rayos X pero reflejados desde la parte posterior del disco.
Pero sabemos que cualquier luz que entra en ese agujero negro no sale, por lo que no deberíamos poder ver nada que esté detrás del agujero negro. (📸NASA)
La razón por la que podemos verlo es porque ese agujero negro está deformando el espacio, doblando la luz y retorciendo los campos magnéticos alrededor de sí mismo.
Esta es la primera observación directa de luz detrás de un agujero negro, un escenario que fue predicho por la teoría de la relatividad general de Einstein pero que hasta ahora nunca había sido confirmado.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Encuentran el primer cachorro de diente de sable del mundo perfectamente momificado dentro del permafrost. Pero ¿dónde y cómo lo han encontrado y qué otras cosas se han encontrado dentro de esta capa permanentemente congelada?
Te lo cuento.❄️👇
(📷Lopatin et al., Nature,2024)
Por primera vez los científicos han encontrado el cuerpo de un cachorro de diente de sable en perfecto estado de conservación en el permafrost ártico, en Siberia de 35.000 años de antigüedad.
No es la primera vez que se encuentra a un animal extinto en el permafrost, pero si este tipo de especie de cachorro.
(📷Lopatin et al., Nature,2024)
Conserva su pelaje, cabeza, torso y extremidades aún intactos y tenia tres semanas de edad. Como cualquier felino que se precie, incluso se conservan sus bigotes.
Fue encontrado en 2020 en el permafrost cerca del río Badyarikha en el noreste de Yakutia, Rusia.
Encuentran un túnel interestelar que conecta nuestro Sistema Solar con la constelación de Centauro, la constelación donde está el sistema estelar más cercano a nosotros: Alfa Centauri. Pero ¿qué es esto y cómo es posible?
¡Viajamos al cosmos para descubrirlo! 🧵👇🏼
(📸 MICHAEL YEUNG / MPE)
No sé si sabías que el Sistema Solar reside dentro de una región peculiar del espacio conocida como la "burbuja caliente local". ¿Pero qué es exactamente esta burbuja? Se trata de una vasta zona de gas sobrecalentado y de muy baja densidad que nos rodea, extendiéndose cientos de años luz en todas direcciones, abrazando nuestro vecindario galáctico.
(📸 (HARVARD–SMITHSONIAN CENTER FOR ASTROPHYSICS)
A medida que te alejas del Sol, el Sistema Solar no se detiene en la órbita de Plutón. En realidad, va mucho más allá, hasta la heliosfera: una especie de "burbuja" propia que el Sol crea con su viento solar y que protege a los planetas de la radiación cósmica del medio interestelar. Sin embargo, al cruzar esta frontera, entramos en una nueva región: el medio interestelar.
¿Esta nuestro planeta enfrentándose a peores eventos meteorológicos? ¿Son más catastróficos, frecuentes y extremos? ¿qué podemos esperar de cara al futuro?
El reciente desastre de la #DANA nos hace plantearnos estas preguntas.
Lo intento explicar de forma sencilla en este hilo 👇
Las inundaciones provocadas por la #DANA en España han provocado más de cien fallecidos en nuestro país y numerosas pérdidas materiales. El aviso de nivel rojo activado por la AEMET en la jornada del martes alertaba de la peligrosidad de la situación. Se sobrepasaron los 500mm en algunas regiones: equivalente a lo que llueve en un año.
(📷Ante sy después por el Landsat-8)
Las tormentas se organizaron y permanecieron estáticas mucho tiempo en la misma zona, alimentadas por la humedad procedente del cálido Mediterráneo gracias a los fortísimos vientos de levante que soplaban con fuerza.
Esto combinado con la orografía y la planificación del territorio en esta región dieron lugar a inundaciones, riadas e imágenes impactantes.
La #DANA nos ha dejado imágenes impactantes y decenas de fallecidos. Las lluvias intensas y las inundaciones han provocado el caos en el Mediterráneo y la pregunta es ¿por qué ha sido tan destructiva y volverá a suceder en el futuro?
Voy a intentar responder vuestras dudas en este hilo.
Las situación que se ha producido ha estado influenciada por varios factores:
- La localización estática de la DANA
- El aporte de humedad por los vientos de Levante
- Un Mediterráneo más cálido de lo normal
Todo ello combinado con la orografía y la planificación del territorio dan como resultado la situación dramática que hemos vivido.
La DANA presentaba el potencial para dejar tiempo muy adverso.
En el caso de Valencia, se creo un flujo de levante constante que llegó hasta las sierras cercanas al litoral, aportando energía constante para el desarrollo de tormentas.
Mientras esta situación se mantuvo estable, durante más de 12 horas, los núcleos tormentosos se desarrollaron de forma constante en la misma zona.
La situación que se está viviendo hoy en el este-sudeste de España con la #DANA está siendo extremadamente peligrosa.
Ya hay varios desaparecidos, carreteras inundadas, graves destrozos… pero ¿qué es este fenómeno y por qué ha sido tan virulento? ¿Está el cambio climático detrás?
¡Abro hilo! 👇🏼
Una DANA es el acrónimo de Depresión Aislada en Niveles Altos o depresión en los niveles altos de la atmósfera, que se ha separado totalmente de la circulación general de la atmósfera, en nuestro caso de la circulación zonal del oeste.
¿Cómo se forman? En niveles altos de la atmósfera, a unos 9000 m de altura, aproximadamente existen intensas corrientes zonales, las cuales se desplazan a gran velocidad.
En nuestras latitudes, la corriente o chorro que más nos afecta es la corriente polar, más conocida como jet stream o corriente en chorro.
De nuevo una famosa corriente oceánica vuelve a ser noticia. Un nuevo estudio, analiza los efectos del freno y colapso de esta poderosa corriente y su impacto en el clima.
Pero ¿qué es, por qué es tan importante y que podría pasar?🌊👇
Comencemos desde el principio: las corrientes oceánicas actúan como una inmensa cinta transportadora global, interminable y vital, que distribuye oxígeno, nutrientes, carbono y calor a lo largo y ancho del planeta.
Este sistema, conocido como la circulación termohalina, regula el clima, soporta la biodiversidad marina y conecta las diferentes regiones del océano.