#PlantScienceClassics #1: The ABC model. 30 years ago, in 1991, plant science legends John Bowman, David Smyth and Elliott Meyerowitz published their groundbreaking paper on the ABC model in @Dev_journal: doi.org/10.1242/dev.11…
A regular Arabidopsis flower is composed of 4 whorls, each featuring specific organs: 4 sepals in the outer whorl, followed by 4 petals, then 6 stamen & 2 carpels in the inner whorl. These identities are controlled by the APETALA2 (AP2), PISTILLATA (PI) & AGAMOUS (AG) genes.
Mutant analysis of these genes showed that ap2 affects whorls 1 & 2 (Region A), pi affects whorls 2 & 3 (Region B), and ag affects whorls 3 & 4 (Region C). For their 1991 paper, the authors added the analysis of double and triple mutants of these three genes.
Based on these analyses, the authors concluded that AP2 confers sepal identity, and AG carpel identity, while the combinatorial effects of AP2 & PI produce petals, and PI & AG produce stamen. And crucially: AP2 & AG must be mutually exclusive!
The beauty of the ABC model is that it is so simple and elegant. And the key in its description was not the development of new methods, tools or mutants, but to come up with a conceptual framework to integrate the existing knowledge.
Following the 1991 @Dev_journal paper, Elliott Meyerowitz teamed up with fellow legend, & #Antirrhinum flower expert, Enrico Coen, to nail down the details of the ABC model as general plant model, in their masterpiece ‘The war of the whorls’, published in @Nature later that year.
And, as reading suggestion for today’s researchers, the authors of the original paper have reunited in 2012, on the occasion of @Dev_journal‘s 25th anniversary, to write a ‘Behind the Scenes’ on their original paper, which is a really interesting read: doi.org/10.1242/dev.08…
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Ethylene is a gaseous #phytohormone with a wide range of roles from plant development to immunity. Ernest Starling in 1905 defined a hormone as mobile chemical messenger synthesized by a multicellular organism, that has physiological activity distant from the site of synthesis.
The effect of ethylene on plants was first noted in the 1900s, when it leaked from illumination gas used in lamps and affected plants nearby. But it was Dimitry Neljubow, who in a series of experiments identified ethlyene as the active substance in the illumination gas in 1905.
#PlantScienceClassics #17: The Mildew Resistance Locus O (MLO). 80 years ago Rudolf Freisleben & Alfred Lein created the first powdery mildew resistant barley plant. 30yrs ago the gene was mapped, 25yrs ago cloned-yet it's mode of action remains a mystery. doi.org/10.1007/BF0148…
Powdery mildew is a fungal disease of many crop plants, most prominently maybe barley and wheat, where outbreaks can reduce grain quality & yield, and ruin complete harvests. Visible are the fluffy patches formed by the fungus (Blumeria graminis f. sp. hordei).
Freisleben used radiation-induced mutagenesis to create the barley 𝘮𝘭𝘰 mutant, which showed full resistant to this pathogen. A massive agricultural breakthrough!
See also Classic #2, to read about how Emmy Stein has developed this technique in 1921:
#PlantScienceClassics #16: A linkage map of Arabidopsis thaliana. In 1983 the legendary Maarten Koornneef published a genetic map of A. thaliana, the basis for genetic work & an important contribution towards the acceptance of Arabidopsis as plant model. doi.org/10.1093/oxford…
In the early 1980s scientists finally adopted A. thaliana as model plant. At this point, several mutants were available, but their positions in the genome were mostly unknown. This was years before genome sequences became available,&genetic maps were still based on recombination.
Arabidopsis pioneer György Rédei did linkage analyses with 14 loci in the 1960s, but his genetic map from 1965 suggested 6 linkage groups – 1 more than chromosomes. Curiously, A. D. McKelvie created another map in parallel - & found 4 groups, 1 less than chromosomes.
#PlantScienceClassics #15 #PlantScienceFails #1: The auxin-independent (axi) Nicotiana tabacum lines. In 1992 Richard Walden et al. (specifically co-worker Inge Czaja) published activation-tagged axi protoplasts @ScienceMagazine that could divide&grow in the absence of any auxin!
The development of plant transformation in the early 1980s (classics #6&13) was inspirational for many scientists. Among them was Richard Walden, who teamed up with plant transformation pioneers Barbara & Thomas Hohn to leverage this advance to develop the “Agroinfection" method.
He then joined the next transformation pioneer, Jeff Schell, to develop more such tools. Their first was Activation-Tagging: 4 CaMV 35S enhancers (classic#9) were placed at the RB of the T-DNA. That way, they would overexpress the plant gene next to which the T-DNA was inserted.
#PlantScienceClassics #14: Mendelian inheritance. In 1866 Gregor Mendel published his work on dominant/recessive trait inheritance in peas, establishing the hereditary rules on which modern genetics is based. But nobody cared,& his scientific career ended. biodiversitylibrary.org/page/48299076
Mendel had always been interested in nature, and grew/kept and observed plants and bees in his parent’s garden. He later decided to become a monk and teacher. However, he failed teacher’s exam in 1850 & 1856, & eventually settled on being a monk and substitute teacher.
He satisfied his curiosity as a naturalist by keeping and observing plants and bees in the monastery garden, and eventually became interested in how traits are determined through generations. So he started to conduct crossing experiments with mice with grey or white fur.
Do you know Daisy Roulland-Dussoix? She is one of the discoverers of restriction enzymes, who’s findings paved the way for the development of recombinant DNA and cloning technologies. Accordingly, the finding was rewarded with a #NobelPrize. But the prize didn’t go to her... 🧵👇
Daisy Roulland-Dussoix worked with Werner Arber to study the mechanism for the observed host-specificity of λ Phages. It was known from an important 1953 paper (Bertani & Weigle) that phages, that had replicated in a certain E. coli strain, could only re-infect the same strain.
Roulland-Dussoix & Arber showed that host-specificity is linked with the phage’s DNA. Using phages carrying radiolabeled DNA, they showed that progeny with 2 parental DNA strands retained specificity, while progeny with newly synthesized daughter strands could adapt to new hosts.