#PlantScienceClassics #3: The ligand-induced flg22/FLS2/BAK1 receptor-module. In a 2007 @Nature paper @delphinechinch1 et al. demonstrated that the bacterial flagellin22 triggers the formation of its own receptor-complex in plants, made up of FLS2 & BAK1: doi.org/10.1038/nature…
Already in 1999/2000, three papers from the legendary Boller-lab @UniBasel in @ThePlantJournal/@MolecularCell identified the elicitor flg22 & its receptor FLS2,laying the groundwork to establish Arabidopsis as a model system to study plant pathogen-interaction & immune-signaling.
But it was the addition of BAK1 as co-receptor, and the mechanistic finding that the ligand flg22 induces the formation of its own receptor-complex, which turned the flg22/FLS2/BAK1-module into the platform for countless new discoveries in the #MPMI/#PlantImmunity field.
In the following years, the events downstream of the activated flg22/FLS2/BAK1-module were identified piece by piece, providing a model pathway to study immune-signaling, but also general mechanisms of ligand-receptor-mediated signal transmission. doi.org/10.1038/nri.20…
At the time BAK1 was known as co-receptor involved in brassinosteroid-signaling,& thus the paper also enabled work into understanding the development-immunity trade-off,&,of course, the receptor/co-receptor principle – as we know today, a widespread mechanism.
This paper is one of my personal favorites. It was published when I had just started work on my Diploma thesis in @simonrdg’s lab, searching for interactors of the pseudokinase CORYNE. I used yeast-based methods, & this paper on an induced receptor-interaction was amazing to me.
Later, when I switched to FRET-based methods, I used the induced FLS2/BAK1-interaction as control to test our newly developed techniques. Also, as little side-fun-fact: when the paper came out, all(!) the authors were already group leaders. Another thing I was amazed by.🙂
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Ethylene is a gaseous #phytohormone with a wide range of roles from plant development to immunity. Ernest Starling in 1905 defined a hormone as mobile chemical messenger synthesized by a multicellular organism, that has physiological activity distant from the site of synthesis.
The effect of ethylene on plants was first noted in the 1900s, when it leaked from illumination gas used in lamps and affected plants nearby. But it was Dimitry Neljubow, who in a series of experiments identified ethlyene as the active substance in the illumination gas in 1905.
#PlantScienceClassics #17: The Mildew Resistance Locus O (MLO). 80 years ago Rudolf Freisleben & Alfred Lein created the first powdery mildew resistant barley plant. 30yrs ago the gene was mapped, 25yrs ago cloned-yet it's mode of action remains a mystery. doi.org/10.1007/BF0148…
Powdery mildew is a fungal disease of many crop plants, most prominently maybe barley and wheat, where outbreaks can reduce grain quality & yield, and ruin complete harvests. Visible are the fluffy patches formed by the fungus (Blumeria graminis f. sp. hordei).
Freisleben used radiation-induced mutagenesis to create the barley 𝘮𝘭𝘰 mutant, which showed full resistant to this pathogen. A massive agricultural breakthrough!
See also Classic #2, to read about how Emmy Stein has developed this technique in 1921:
#PlantScienceClassics #16: A linkage map of Arabidopsis thaliana. In 1983 the legendary Maarten Koornneef published a genetic map of A. thaliana, the basis for genetic work & an important contribution towards the acceptance of Arabidopsis as plant model. doi.org/10.1093/oxford…
In the early 1980s scientists finally adopted A. thaliana as model plant. At this point, several mutants were available, but their positions in the genome were mostly unknown. This was years before genome sequences became available,&genetic maps were still based on recombination.
Arabidopsis pioneer György Rédei did linkage analyses with 14 loci in the 1960s, but his genetic map from 1965 suggested 6 linkage groups – 1 more than chromosomes. Curiously, A. D. McKelvie created another map in parallel - & found 4 groups, 1 less than chromosomes.
#PlantScienceClassics #15 #PlantScienceFails #1: The auxin-independent (axi) Nicotiana tabacum lines. In 1992 Richard Walden et al. (specifically co-worker Inge Czaja) published activation-tagged axi protoplasts @ScienceMagazine that could divide&grow in the absence of any auxin!
The development of plant transformation in the early 1980s (classics #6&13) was inspirational for many scientists. Among them was Richard Walden, who teamed up with plant transformation pioneers Barbara & Thomas Hohn to leverage this advance to develop the “Agroinfection" method.
He then joined the next transformation pioneer, Jeff Schell, to develop more such tools. Their first was Activation-Tagging: 4 CaMV 35S enhancers (classic#9) were placed at the RB of the T-DNA. That way, they would overexpress the plant gene next to which the T-DNA was inserted.
#PlantScienceClassics #14: Mendelian inheritance. In 1866 Gregor Mendel published his work on dominant/recessive trait inheritance in peas, establishing the hereditary rules on which modern genetics is based. But nobody cared,& his scientific career ended. biodiversitylibrary.org/page/48299076
Mendel had always been interested in nature, and grew/kept and observed plants and bees in his parent’s garden. He later decided to become a monk and teacher. However, he failed teacher’s exam in 1850 & 1856, & eventually settled on being a monk and substitute teacher.
He satisfied his curiosity as a naturalist by keeping and observing plants and bees in the monastery garden, and eventually became interested in how traits are determined through generations. So he started to conduct crossing experiments with mice with grey or white fur.
Do you know Daisy Roulland-Dussoix? She is one of the discoverers of restriction enzymes, who’s findings paved the way for the development of recombinant DNA and cloning technologies. Accordingly, the finding was rewarded with a #NobelPrize. But the prize didn’t go to her... 🧵👇
Daisy Roulland-Dussoix worked with Werner Arber to study the mechanism for the observed host-specificity of λ Phages. It was known from an important 1953 paper (Bertani & Weigle) that phages, that had replicated in a certain E. coli strain, could only re-infect the same strain.
Roulland-Dussoix & Arber showed that host-specificity is linked with the phage’s DNA. Using phages carrying radiolabeled DNA, they showed that progeny with 2 parental DNA strands retained specificity, while progeny with newly synthesized daughter strands could adapt to new hosts.