Marc Somssich Profile picture
Oct 11, 2021 12 tweets 9 min read Read on X
#PlantScienceClassics #6: The T-DNA. In a 1977 paper, Mary-Dell Chilton & colleagues identify the Transferred DNA (T-DNA), the bit of DNA that Agrobacterium tumefaciens inserts into the plant genome, to kick off the race toward the first transgenic plant. doi.org/10.1016/0092-8… A portrait of Mary-Dell Chi...
It was known since before the 1940s, that Agrobacterium could induce tumors (‘crown galls’) on plants, & that these tumors then grow autonomously of the bacterium, meaning that the plant had been permanently ‘transformed’. But the molecular details for the process were not known. The title page of the 1912 ...
Armin Braun already speculated in 1947 that DNA may be involved in this transformation process. But research really took off in 1967, when Rob Schilperoort showed that Agrobacterium RNA could hybridize with crown gall DNA,indicating that bacterial DNA had indeed been transferred. Excerpt from Armin Braun's ...Table 1 or Rob Schilperoort...
This paper was also what got Mary-Dell Chilton interested. She had previously pioneered a new, more sensitive DNA-hybridization technique, which she intended to use identify the transferred DNA. However, she failed to detect any agrobacterial chromosomal DNA in the plant tumors.
The explanation came in 1974, then Ivo Zaenen from the joint lab of Jeff Schell & Marc van Montagu identified a giant extra-chromosomal plasmid in oncogenic Agrobacterium strains: The Ti-plasmid. Mary-Dell Chilton had tested the wrong plasmid in her experiment. Electronmicroscopy image of...
But when she repeated her experiment with Ti-plasmid DNA, she once again was unable to detect it in plant tumor tissue. Frustrated with these failures, Chilton & her lab were almost ready to throw in the towel. But they gave it one last try. Excerpt from Mary-Dell Chil...
In a ‘brute force experiment’, the entire lab worked over 60 hrs to chop up the entire Ti-plasmid into little bits, which they all tested individually for complementary sequences in tumor DNA. All this at a time, when molecular biology was still in its infancy. A tremendous feat! ImageA 3-part detailed descripti...A 3-part detailed descripti...Image of the team: Figure 2...
By 1977 they had succeeded in identifying the exact bit of DNA within the Ti-plasmid transferred into the plant cell: The T-DNA. The resulting @CellCellPress publication started one of the most exciting developments in plant biology: The race toward the first transgenic plant. A plot showing the binding ...
I describe the race toward the first transgenic plant in detail and with all references in my ‘Short History of Plant Transformation’: doi.org/10.7287/peerj.…. Spoiler: It ended in 1983, with a photo-finish, and publications on transgenic plant lines from four labs.
The first 2 came from the Chilton & Schell/van Montagu labs, both in @Nature, then Monsanto followed in @PNASNews & the Hall lab at the end of the year in @ScienceMagazine. (1)doi.org/10.1038/304184… (2)doi.org/10.1038/303209… (3)doi.org/10.1073/pnas.8… (4)doi.org/10.1126/scienc… Title pages of the four 198...
The development of plant transformation revolutionized #PlantSciences, was vital to kickstart the field of #PlantMolecularBiology, and launched the #PlantBiotechnology sector. And, remarkably, the race was competitive but fair, with high-profile papers for all involved! A quote from Marc van Monta...
Further reading: Two autobiographical pieces by Mary-Dell Chilton on the time: My Secret Life: doi.org/10.1146/annure… Agrobacterium. A Memoir: doi.org/10.1104/pp.125… Another by Luis Herrera-Estrella: doi.org/10.1111/pbi.13… and a book by Judith Heimann: doi.org/10.3920/978-90… Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Marc Somssich

Marc Somssich Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @somssichm

Mar 26, 2023
#PlantScienceClassics #18: Ethylene triple response mutants. 35 years ago Anthony Bleecker et al. exploited the triple response phenotype to identify the #ethylene receptor ETR1. The ethylene story is another example for #PlantBlindness @NobelPrize. doi.org/10.1126/scienc… The Science cover picture of the 1988 issue shows the triple
Ethylene is a gaseous #phytohormone with a wide range of roles from plant development to immunity. Ernest Starling in 1905 defined a hormone as mobile chemical messenger synthesized by a multicellular organism, that has physiological activity distant from the site of synthesis. Excerpt from Ernest Henry Starling’s 1905 paper “The Cro
The effect of ethylene on plants was first noted in the 1900s, when it leaked from illumination gas used in lamps and affected plants nearby. But it was Dimitry Neljubow, who in a series of experiments identified ethlyene as the active substance in the illumination gas in 1905.
Read 17 tweets
Oct 12, 2022
#PlantScienceClassics #17: The Mildew Resistance Locus O (MLO). 80 years ago Rudolf Freisleben & Alfred Lein created the first powdery mildew resistant barley plant. 30yrs ago the gene was mapped, 25yrs ago cloned-yet it's mode of action remains a mystery. doi.org/10.1007/BF0148… A portrait of Rudolf Freisl...
Powdery mildew is a fungal disease of many crop plants, most prominently maybe barley and wheat, where outbreaks can reduce grain quality & yield, and ruin complete harvests. Visible are the fluffy patches formed by the fungus (Blumeria graminis f. sp. hordei). A leaf and awn from a barle...
Freisleben used radiation-induced mutagenesis to create the barley 𝘮𝘭𝘰 mutant, which showed full resistant to this pathogen. A massive agricultural breakthrough!
See also Classic #2, to read about how Emmy Stein has developed this technique in 1921:
Read 12 tweets
Apr 8, 2022
#PlantScienceClassics #16: A linkage map of Arabidopsis thaliana. In 1983 the legendary Maarten Koornneef published a genetic map of A. thaliana, the basis for genetic work & an important contribution towards the acceptance of Arabidopsis as plant model. doi.org/10.1093/oxford… Title page of the 1983 pape...
In the early 1980s scientists finally adopted A. thaliana as model plant. At this point, several mutants were available, but their positions in the genome were mostly unknown. This was years before genome sequences became available,&genetic maps were still based on recombination.
Arabidopsis pioneer György Rédei did linkage analyses with 14 loci in the 1960s, but his genetic map from 1965 suggested 6 linkage groups – 1 more than chromosomes. Curiously, A. D. McKelvie created another map in parallel - & found 4 groups, 1 less than chromosomes. György Rédei’s linkage map,...A. D. McKelvie’s linkage ma...
Read 14 tweets
Mar 31, 2022
#PlantScienceClassics #15 #PlantScienceFails #1: The auxin-independent (axi) Nicotiana tabacum lines. In 1992 Richard Walden et al. (specifically co-worker Inge Czaja) published activation-tagged axi protoplasts @ScienceMagazine that could divide&grow in the absence of any auxin! Title page of the retracted...
The development of plant transformation in the early 1980s (classics #6&13) was inspirational for many scientists. Among them was Richard Walden, who teamed up with plant transformation pioneers Barbara & Thomas Hohn to leverage this advance to develop the “Agroinfection" method. Title page of the 1986 PNAS...
He then joined the next transformation pioneer, Jeff Schell, to develop more such tools. Their first was Activation-Tagging: 4 CaMV 35S enhancers (classic#9) were placed at the RB of the T-DNA. That way, they would overexpress the plant gene next to which the T-DNA was inserted. Figure 1 of the paper showi...
Read 12 tweets
Jan 25, 2022
#PlantScienceClassics #14: Mendelian inheritance. In 1866 Gregor Mendel published his work on dominant/recessive trait inheritance in peas, establishing the hereditary rules on which modern genetics is based. But nobody cared,& his scientific career ended. biodiversitylibrary.org/page/48299076 A portrait of Gregor Mendel...
Mendel had always been interested in nature, and grew/kept and observed plants and bees in his parent’s garden. He later decided to become a monk and teacher. However, he failed teacher’s exam in 1850 & 1856, & eventually settled on being a monk and substitute teacher.
He satisfied his curiosity as a naturalist by keeping and observing plants and bees in the monastery garden, and eventually became interested in how traits are determined through generations. So he started to conduct crossing experiments with mice with grey or white fur. An image of Mendel’s garden...
Read 19 tweets
Jan 20, 2022
Do you know Daisy Roulland-Dussoix? She is one of the discoverers of restriction enzymes, who’s findings paved the way for the development of recombinant DNA and cloning technologies. Accordingly, the finding was rewarded with a #NobelPrize. But the prize didn’t go to her... 🧵👇 A portrait of Daisy Roulland-Dussoix from Wikipedia.
Daisy Roulland-Dussoix worked with Werner Arber to study the mechanism for the observed host-specificity of λ Phages. It was known from an important 1953 paper (Bertani & Weigle) that phages, that had replicated in a certain E. coli strain, could only re-infect the same strain. Title page of the 1953 paper from G. Bertani and J. J. Weigl
Roulland-Dussoix & Arber showed that host-specificity is linked with the phage’s DNA. Using phages carrying radiolabeled DNA, they showed that progeny with 2 parental DNA strands retained specificity, while progeny with newly synthesized daughter strands could adapt to new hosts. Title page of the first paper by Werner Arber and Daisy DussExcerpt from the paper stating ‘(2) All progeny λ K(Pl) p
Read 11 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(