Looking at $PACB the company:

They are building the best long and short read company in sequencing.
1/ They already have the long read sequencing with the SMRT technology. They have an install base of 326 instillations as of Q3. That has a lot of potential to grow. Half their revenues comes from the selling of the consumables that goes into running those devices.
2/ As the Base grows, this becomes like the Apple model with and ecosystem. They buy the device and then you earn revenue off the use of that device.
3/ They recently bought another company called Omniome which is building a new generation of short sequencing device.
4/ They claim this device does a better job of matching DNA and nucleotides. This significantly boosts the accuracy. It also boasts the ability to have more samples per run.
5/ The combination of the long and short sequencing gives $PACB a broad offering of devices across all the needs in the sequencing space. This can drive more cross selling between the devices and bring in more customers.
6/ Here is a look at the combined offerings:

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Biotech2k

Biotech2k Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @Biotech2k1

4 Jan
Looking at $NVTA:

This company is all about what we do with that genetic data after we got it.
1/ The sequencing companies make the machines to actually sequence the DNA or RNA. $NVTA is about taking that genetic data and translating it into something that can be used my medical professionals to treat patients.
2/ This is about using automation, software and a database to use the genetic data acquired by the sequencing. I call this the Genomics Application company.
Read 8 tweets
4 Jan
Looking at $PACB science:

Digging into how Single Molecule, Real Time (SMRT) technology.
1/ The SMRT technology takes advantage of DNA synthesis. To understand it, we must do a brief review of DNA synthesis. When DNA gets copied, a single strand of DNA gets copied by the DNA polymerase enzyme.
2/ The nucleotides are picked up by the DNA polymerase and incorporated into the new strand of DNA that is being built that is an exact opposite copy of the template strand.
Read 10 tweets
3 Jan
Looking at $CRSP:

Taking a look at the use of CRISPR CAS9 use in ex-vivo cell therapies.
1/ $CRSP is using the same CRISPR/CAS9 system as $NTLA. This is made up of the CAS9 enzyme which has 2 nuclease domains that do the cutting of the DNA into a Double Stranded Break. It also includes a guide RNA for searching the DNA for the correct site.
2/ The biggest danger of the CAS9 enzyme is that cuts both strands of the DNA at the same location. Without the use of a template strand, this will trigger Non Homologous End Joining which is a very inaccurate process.
Read 18 tweets
3 Jan
Looking at $NTLA:

Taking a look the science behind CRISPR CAS9 and in-vivo liver editing.
1/ $NTLA is using the CRISPR/CAS9 system. This is made up of the CAS9 enzyme which has 2 nuclease domains that do the cutting of the DNA into a Double Stranded Break. It also includes a guide RNA for searching the DNA for the correct site.
2/ The biggest danger of the CAS9 enzyme is that cuts both strands of the DNA at the same location. Without the use of a template strand, this will trigger Non Homologous End Joining which is a very inaccurate process.
Read 11 tweets
3 Jan
Looking at $BEAM science:

Taking a look at the preclinical data for their programs so far.
1/ They have two main programs around correcting Sickle Cell disease. Their first program BEAM-101 is doing a simple gene knockout on the gene that suppresses Fetal Hemoglobin expression causing the reactivation of the Fetal Hb gene.
2/ Their second program uses base editing to change the defective base in the Sickling Hemoglobin to a Makassar that works normally.
Read 11 tweets
2 Jan
Looking at $BEAM the technology:

This will be a look at the underlying technology of base editing. I plan another guide for the science and maybe another for the corporate.
1/ They are using base editing technology. This takes the CRISPR CAS9 enzyme along with the guide RNA attached to a deaminase enzyme to make a modification to a single base of the DNA.
2/ The guide RNA looks for a photospacer sequence in the DNA. That is just a matching sequence of DNA that matches the guide RNA. Next to the photospacer sequence will the the Photospacer adjacent motif (PAM).
Read 13 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(