Let's test your probabilistic intuition!

There are 25 people in a room. What is the probability that two of them share the same birthday?

If you think it is low, you'll be surprised to find out that the actual probability is more than 50%.

Here is why!

↓ A thread. ↓
The usual thinking is if there are 25 people and 365 days in a year, then chances should be roughly 24/365 ≈ 6.5%, and if we have 366 people, then it is guaranteed that two of them share birthdays.

However, this is not how probability works.
First, it is much easier to talk about the probability of having no shared birthdays.

This is a common trick, often making the calculations much more manageable.
Let's simplify the problem even more.

Given two people, what is the probability of sharing the same birthday?

By encoding the birthday with an integer between 1 and 365 and the configurations as tuples, we can easily count their total number.
How many days can we pick as the 1st element of the tuple? 365.
How many days can we pick as the 2nd element to avoid the birthday collision? 364.

In total, there are 365*364 ways.
To count the number of total configurations, we simply disregard the potential birthday collision.

Thus, there are 365*365 possibilities.
Now we can calculate the probability as the ratio of the number of desired outcomes and all possible outcomes.
In this case, the result is the following.
Summing up, the probability of two people sharing the same birthdays is less than one percent.

What about the general case?
Following the same logic, we can solve the general problem.
At n = 23 people, the probability reaches 50%.

At n = 41, the probability is 90%.

Quite surprising, isn't it?
If you are curious, this is what the probabilities look like.
A few days ago, I posted this very same question, asking you to estimate the probability of shared birthdays, given 25 people.

These were your answers.

What can we learn from the birthday problem?

That our intuition about probability often fails hard. When asked, most estimate the chances of having a shared birthday among 25 people very low, even though the actual probability is more than 50%.
Having a deep understanding of math will make you a better engineer. I want to help you with this, so I am writing a comprehensive book about the subject.

If you are interested in the details and beauties of mathematics, check out the early access!

tivadardanka.com/book

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka 🇺🇦

Tivadar Danka 🇺🇦 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Feb 15
People are inherently bad at probabilistic thinking.

Our intuition deceives us. We often encounter seemingly contradictory phenomena that go against our expectations.

The most famous example is the Monty Hall paradox. Let's see what it is and how to resolve it!

↓ A thread. ↓
In the ’60s, there was a TV show in the United States called Let’s Make a Deal.

As a contestant, you faced three closed doors, one having a car behind it (that you could take home), while the rest were empty.

You had the opportunity to open one.
Suppose that after selecting door No. 1, Monty Hall, the show host, opens the third, showing that it was not the winning one.

Now, you have the opportunity to change your mind and open door No. 2 instead of the first one.

Do you take it?
Read 14 tweets
Jan 12
You can explain the Bayes formula in pure English.

Despite being overloaded with seemingly complex concepts, it conveys an important lesson about how observations change our beliefs about the world.

Let's take it apart!

↓ A thread. ↓
Essentially, the Bayes formula describes how to update our models, given new information.

To understand why, we will look at a simple example with a twist: tossing a biased coin.
Suppose that we have a magical coin!

When tossed, it can come up with heads or tails, but not necessarily with equal chance.

The catch is, we don't know the exact probabilities. So, we have to perform some experiments to find that out.
Read 14 tweets
Dec 27, 2021
Entropy is not the easiest thing to understand.

It is rumored to describe something about information and disorder, but it is unclear why.

What do logarithms and sums have to do with the concept of information?

Let me explain!

↓ A thread. ↓
I have randomly selected an integer between 0 and 31.

Can you guess which one? You can ask as many questions as you want.

What is the minimum number of questions you have to ask to be 100% sure?

You can start guessing the numbers one by one, sure. But there is a better way!
If you ask, "is the number larger or equal than 16?" you immediately eliminate half the search space!

Continuing with this tactic, you can find the number for sure in 5 questions.
Read 15 tweets
Dec 16, 2021
Why is matrix multiplication defined the way it is?

When I first learned about it, the formula seemed too complicated and counter-intuitive! I wondered, why not just multiply elements at the same position together?

Let me explain why!

↓ A thread. ↓

1/11
First, let's see how to make sense of matrix multiplication!

The elements of the product are calculated by multiplying rows of 𝐴 with columns of 𝐵.

It is not trivial at all why this is the way. 🤔

To understand, let's talk about what matrices really are!

2/11
Matrices are just representations of linear transformations: mappings between vector spaces that are interchangeable with addition and scalar multiplication.

Let's dig a bit deeper to see why are matrices and linear transformations are (almost) the same!

3/11
Read 11 tweets
Dec 15, 2021
Expected value is one of the most fundamental concepts in probability theory and machine learning.

Have you ever wondered what it really means and where it comes from?

The formula doesn't tell the entire story right away.

💡 Let's unravel what is behind the scenes! 💡
First, let's take a look at a simple example.

Suppose that we are playing a game. You toss a coin, and

• if it comes up heads, you win $1,
• but if it is tails, you lose $2.

Should you even play this game with me? 🤔

We are about to find out!
After 𝑛 rounds, your earnings can be calculated by the number of heads times $1 minus the number of tails times $2.

If we divide total earnings by 𝑛, we obtain the average earnings per round.

What happens if 𝑛 approaches infinity? 🤔
Read 9 tweets
Dec 9, 2021
Just released a new chapter in the early access of my Mathematics of Machine Learning book!

It is about computing determinants in practice. Sadly, this is often missing from linear algebra courses, so I decided to fill this gap.

↓ Here's the gist. ↓
The determinant of a matrix is essentially the product of

• the orientation of its column vectors (which is either 1 or -1),
• and the area of the parallelepiped determined by them.

For 2x2 matrices, this is illustrated below.
Here is the thing.

In mathematics, we generally use two formulas to compute this quantity.

First, we have a sum that runs through all permutations of the columns.

This formula is hard to understand, let alone to implement.
Read 10 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(