How my life is changing as a direct result of attending the #RStudioConf 🧵

#rstats
Just 3 days ago, I had the pleasure of watching the #rstudioconf2022 kick off.

I've been attending since 2018 and watching even longer than that.

And, I was just a normal spectator in the audience until this happened.
@topepos and @juliasilge's keynote showed all of the open source work their team has been working on to build the best machine learning ecosystem in R called #tidymodels.

And then they brought this slide up.
Max and Julia then proceeded to talk about how the community members have been working on expanding the ecosystem.

- Text Recipes for Text
- Censored for Survival Modeling
- Stacks for Ensembles

And then they announced me and my work on Modeltime for Time Series!!!
I had no clue this was going to happen.

Just a spectator in the back.

My friends to both sides went nuts. Hugs, high-fives, and all.

My students in my slack channel went even more nuts.
Throughout the rest of the week, I was on cloud-9.

My students that were at the conf introduced themselves.

Much of our discussions centered around Max & Julia's keynote and the exposure that modeltime got.
And all of this wouldn't be possible without the support of this company. Rstudio / posit.

So, I'm honored to be part of something bigger than just a programming language.

And if you'd like to learn more about what I do, I'll share a few links.
The first is my modeltime package for #timeseries.

This has been a 2-year+ passion project for building the premier time series forecasting system.

It now has multiple extensions including ensembles, resampling, deep learning, and more.

business-science.github.io/modeltime/
The second is my company @bizScienc.

For the past 4-years I've dedicated myself to teaching students how to apply data science to business.

I have 3000+ students worldwide.

Here are some of my tribe that I met at #rstudioconf2022.
The third is my 40-minute webinar.

I put a free presentation together to help you on your journey to become a data scientist.

A few things I talk about:

Modeltime for Time Series.
Tidymodels & H2O for Machine Learning
Shiny for Web Apps
and 7 more!

learn.business-science.io/free-rtrack-ma…

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with 🔥 Matt Dancho (Business Science) 🔥

🔥 Matt Dancho (Business Science) 🔥 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @mdancho84

Oct 18
Top 10 Python Libraries for Generative AI You Need to Master in 2025

(The tools behind document agents, intelligent assistants, and next-gen interfaces.)

Everything you need to know: 🧵 Image
1. LangChain

The backbone of intelligent LLM apps.

Build agents that:
✅ Reason
✅ Use tools
✅ Remember conversations
✅ Access APIs

If you're building anything with GPTs, LangChain is your starting point.

langchain.com
2. LangGraph

LangChain + DAGs = LangGraph.

It powers:
- Multi-agent workflows
- Conditional logic
- Real-time state management

If you're serious about production AI agents, this is a must.
langgraph.dev
Read 15 tweets
Oct 13
🚨BREAKING: New Python library for agentic data processing and ETL with AI

Introducing DocETL.

Here's what you need to know: Image
1. What is DocETL?

It's a tool for creating and executing data processing pipelines, especially suited for complex document processing tasks.

It offers:

- An interactive UI playground
- A Python package for running production pipelines Image
2. DocWrangler

DocWrangler helps you iteratively develop your pipeline:

- Experiment with different prompts and see results in real-time
- Build your pipeline step by step
- Export your finalized pipeline configuration for production use Image
Read 8 tweets
Oct 12
Stop doing Customer Segmentation with plain vanilla Scikit Learn.

Add these 7 Python libraries to your RFM, clustering, and
customer segmentation projects: Image
1. Data preparation

- load data with pandas
- impute/mask with Feature-engine

Website: feature-engine.trainindata.com/en/latest/inde…Image
2. Feature creation:

- derive recency/frequency/monetary features
- Use rfm or Lifetimes

Github: github.com/sonwanesuresh9…Image
Read 8 tweets
Oct 11
🚨NEW: Python library for LLM Prompt Management

This is what it does: Image
The Python library is called Promptify.

It combines a prompter, LLMs, and pipeline to Solve NLP Problems with LLM's.

You can easily generate different NLP Task prompts for popular generative models like GPT, PaLM, and more with Promptify. Image
Don't understand what that means? Let's take an example:

This is an NLP Classification Task.

The prompt combines a model, prompter, and pipeline to perform a Medical classification of the patient's symptoms. Image
Read 9 tweets
Oct 11
🚨 BREAKING: Microsoft launches a free Python library that converts ANY document to Markdown

Introducing Markitdown. Let me explain. 🧵 Image
1. Document Parsing Pipelines

MarkItDown is a lightweight Python utility for converting various files to Markdown for use with LLMs and related text analysis pipelines. Image
2. Supported Documents

MarkItDown supports:

- PDF
- PowerPoint
- Word
- Excel
- Images (EXIF metadata and OCR)
- Audio (EXIF metadata and speech transcription)
- HTML
- Text-based formats (CSV, JSON, XML)
- ZIP files (iterates over contents)
- Youtube URLs
- EPubs Image
Read 10 tweets
Oct 8
These 7 statistical analysis concepts have helped me as an AI Data Scientist.

Let's go: 🧵 Image
Step 1: Learn These Descriptive Statistics

Mean, median, mode, variance, standard deviation. Used to summarize data and spot variability. These are key for any data scientist to understand what’s in front of them in their data sets. Image
2. Learn Probability

Know your distributions (Normal, Binomial) & Bayes’ Theorem. The backbone of modeling and reasoning under uncertainty. Central Limit Theorem is a must too. Image
Read 12 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(