Just 3 days ago, I had the pleasure of watching the #rstudioconf2022 kick off.
I've been attending since 2018 and watching even longer than that.
And, I was just a normal spectator in the audience until this happened.
@topepos and @juliasilge's keynote showed all of the open source work their team has been working on to build the best machine learning ecosystem in R called #tidymodels.
And then they brought this slide up.
Max and Julia then proceeded to talk about how the community members have been working on expanding the ecosystem.
- Text Recipes for Text
- Censored for Survival Modeling
- Stacks for Ensembles
And then they announced me and my work on Modeltime for Time Series!!!
I had no clue this was going to happen.
Just a spectator in the back.
My friends to both sides went nuts. Hugs, high-fives, and all.
My students in my slack channel went even more nuts.
Throughout the rest of the week, I was on cloud-9.
My students that were at the conf introduced themselves.
Much of our discussions centered around Max & Julia's keynote and the exposure that modeltime got.
And all of this wouldn't be possible without the support of this company. Rstudio / posit.
So, I'm honored to be part of something bigger than just a programming language.
And if you'd like to learn more about what I do, I'll share a few links.
The first is my modeltime package for #timeseries.
This has been a 2-year+ passion project for building the premier time series forecasting system.
It now has multiple extensions including ensembles, resampling, deep learning, and more.
Logistic Regression is the most important foundational algorithm in Classification Modeling.
In 2 minutes, I'll crush your confusion.
Let's dive in:
1. Logistic regression is a statistical method used for analyzing a dataset in which there are one or more independent variables that determine a binary outcome (in which there are only two possible outcomes). This is commonly called a binary classification problem.
2. The Logit (Log-Odds):
The formula estimates the log-odds or logit. The right-hand side is the same as the form for linear regression. But the left-hand side is the logit function, which is the natural log of the odds ratio. The logit function is what distinguishes logistic regression from other types of regression.
These 7 statistical analysis concepts have helped me as an AI Data Scientist.
Let's go: 🧵
Step 1: Learn These Descriptive Statistics
Mean, median, mode, variance, standard deviation. Used to summarize data and spot variability. These are key for any data scientist to understand what’s in front of them in their data sets.
2. Learn Probability
Know your distributions (Normal, Binomial) & Bayes’ Theorem. The backbone of modeling and reasoning under uncertainty. Central Limit Theorem is a must too.
🚨BREAKING: New Python library for Bayesian Marketing Mix Modeling and Customer Lifetime Value
It's called PyMC Marketing.
This is what you need to know: 🧵
1. What is PyMC Marketing?
PyMC-Marketing is a state-of-the-art Bayesian modeling library that's designed for Marketing Mix Modeling (MMM) and Customer Lifetime Value (CLV) prediction.
2. Benefits
- Incorporate business logic into MMM and CLV models
- Model carry-over effects with adstock transformations
- Understand the diminishing returns
- Incorporate time series and decay
- Causal identification
Understanding P-Values is essential for improving regression models.
In 2 minutes, I'll crush your confusion.
Let's go:
1. The p-value:
A p-value in statistics is a measure used to assess the strength of the evidence against a null hypothesis.
2. Null Hypothesis (H₀):
The null hypothesis is the default position that there is no relationship between two measured phenomena or no association among groups. For example, under H₀, the regressor does not affect the outcome.
🚨 BREAKING: IBM launches a free Python library that converts ANY document to data
Introducing Docling. Here's what you need to know: 🧵
1. What is Docling?
Docling is a Python library that simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
2. Document Conversion Architecture
For each document format, the document converter knows which format-specific backend to employ for parsing the document and which pipeline to use for orchestrating the execution, along with any relevant options.