2/Sphenopalatine ganglion (SPG) is the largest collection of neurons outside the brain—like a mini brain just for your face. It contains sensory, sympathetic, & parasympathetic nerve fibers. Given this, it’s not surprising that it’s felt to contribute to facial pain syndromes
3/SPG is a meeting point for the sensory nerves from V2 (thus related to trigeminal neuralgia) & the sympathetics and parasympathetics from the greater superficial and deep petrosal nerves, which have been implicated in cluster headache, migraine, & other facial pain syndromes.
4/We can see the SPG in the pterygopalatine fossa on MR neurography. We can see V2 in rotundum as well as the greater superficial petrosal (GSP) & deep petrosal nerves forming the vidian nerve right below rotundum in the vidian canal. These come together as the SPG in the PPF.
5/ SPG blocks are classically for cluster HA/trigeminal autonomic cephalgia (TAC) bc of its parasympathetic activation (lacrimation, rhinorrhea, etc) & sympathetic dysfunction (ptosis & miosis)—but it has been found to be effective in other HA and facial pain syndromes
6/The simplest SPG block method is the transnasal topical approach. A cotton swab applicator soaked w/local anesthetic is advanced posterior to the middle turbinate. It is then laid against the mucosa in that region & the anesthetic is absorbed through the mucosa to the SPG.
7/The next more invasive step is to add to the insertion of a curved catheter, to inject local anesthetic, rather than just laying a cotton soaked tip in that region. However, the injected anesthetic is still absorbed through the mucosa to the SPG.
8/A more direct route is to come to the SPG from below, inserting a syringe through the greater palatine foramen of the posterior hard palate & directly injecting upward into the PPF, where the SPG lives. However, there are many significant drawbacks to this method.
9/Finally, the most direct method is from an infrazygomatic approach to the PPF under image guidance to directly inject anesthetic & possibly steroid directly onto the SPG. This has the advantage of targeted & precise delivery. Only drawbacks are technical difficulty & radiation.
10/Which approach is the best? Intranasal is easier and less invasive, but infrazygomatic is more precise. Some studies have suggested precision matters. So don’t be afraid to put your needle where it needs to go to help relieve the patient’s pain.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
1/Do radiologists sound like they are speaking a different language when they talk about MRI?
T1 shortening what? T2 prolongation who?
Here’s a translation w/an introductory thread to MRI.
2/Let’s start w/T1—it is #1 after all! T1 is for anatomy
Since it’s anatomic, brain structures will reflect the same color as real life
So gray matter is gray on T1 & white matter is white on T1
So if you see an image where gray is gray & white is white—you know it’s a T1
3/T1 is also for contrast
Contrast material helps us to see masses
Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see.
So you don’t have time to struggle w/that stroke alert head CT.
If there’s no flow, what are the things you need to know??
Here’s a thread to help you with the five main CT findings in acute stroke.
2/CT in acute stroke has 2 main purposes—(1) exclude intracranial hemorrhage (a contraindication to thrombolysis) & (2) exclude other pathologies mimicking acute stroke.
However, that doesn’t mean you can’t see other findings that can help you diagnosis a stroke.
3/Infarct appearance depends on timing.
In first 12 hrs, the most common imaging finding is…a normal head CT.
However, in some, you see a hyperdense artery or basal ganglia obscuration.
Later in the acute period, you see loss of gray white differentiation & sulcal effacement
Brain MRI anatomy is best understood in terms of both form & function.
Here’s a short thread to help you to remember important functional brain anatomy--so you truly can clinically correlate!
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex.
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG)
Here's a little help on how to do it yourself w/a thread on how to read a head CT!
2/In bread & butter neuroimaging—CT is the bread—maybe a little bland, not super exciting—but necessary & you can get a lot of nutrition out of it
MRI is like the butter—everyone loves it, it makes everything better, & it packs a lot of calories. Today, we start w/the bread!
3/The most important thing to look for on a head CT is blood.
Blood is Bright on a head CT—both start w/B.
Blood is bright bc for all it’s Nobel prizes, all CT is is a density measurement—and blood is denser (thicker) than water & denser things are brighter on CT