Latest analysis for #Starlink & #OneWeb shows these two constellations accounted for 42% of all close approaches within 5 km predicted by #SOCRATES at the end of August, with Starlink alone accounting for 29%. [1/n]
On average, #SOCRATES predicts that each #Starlink satellite will now experience 1 close approach within 5 km with a non-Starlink object every day, and each #OneWeb satellite will experience 3.4 close approaches with a non-OneWeb object every day. These rates are increasing [2/n]
Here's the same data from [2/n] plotted with respect to the number of satellites in each constellation in orbit, clearly showing #SOCRATES predicts that #OneWeb satellites experience more close approaches (within 5 km) per satellite than the #Starlink satellites [3/n]
Focusing on the #SOCRATES predictions for close approaches with max. collision probability of at least 1E-5, we see that the two constellations accounted for 30% of all such close approaches in August, with #Starlink alone accounting for 20%. [4/n]
We see a rising trend through time in predictions of the average number of such close approaches being experienced by each satellite on a daily basis, with #OneWeb satellites seeing a rate that is now 5 times greater than the #Starlink satellites. at 0.05 per sat per day [5/n]
Here's the equivalent #SOCRATES data showing the average number of conjunctions with max. collision probability of at least 1E-5 per satellite per day [6/n]
Across all of the predicted conjunctions within 5 km for #Starlink just under half (47%) involve a debris object, one-quarter (23%) involve another non-Starlink payload & just over one-fifth (22%) involve another Starlink satellite (likely 'ignored' by the operator) [7/n]
For #OneWeb, the picture is very different. Just under 70% of all the conjunctions involve a non-OneWeb payload with only one-quarter (26%) involving a debris object. [8/n]
Hence the predictions from #SOCRATES suggest that #OneWeb has experienced about 33% more conjunctions with other payloads than #Starlink despite the constellations substantially smaller size. This is likely due to the relatively long orbit raising process through LEO. [9/n]
Taking a snapshot (from a #SOCRATES report generated on 12 September) the close approaches within 5 km involving #Starlink and #OneWeb can be seen clearly, with the #Starlink shells around 550 km & the OneWeb shells around 1200 km dominating. [10/n]
Here's the same #SOCRATES data plotted using a logarithmic y-axis, which distorts but enables a little more clarity at the lower counts. [11/n]
And this is the same data now shown as the proportion of all close approaches at each altitude. #Starlink shells around 350 km & 550 km, and #OneWeb shells between 1100 km & 1200 km become readily apparent, as do close approaches occurring during orbit raising. [12/n]
A follow-on from yesterday's thread with a note about averages. In a #SOCRATES report from 30 June 2022 the average collision probability for each #Starlink conjunction was 3.7E-6 but the range of values can be broad (chart shows data since 2019) [1/n]
#SOCRATES predicted some events with a collision probability > 1E-2 (1-in-100) & some with a probability < 1E-7 (1-in-10,000,000). The average value might seem to be almost negligible & you might think all conjunctions would be similar, but that's not the case [2/n]
In addition, some #Starlink & #OneWeb satellites experience more conjunctions than others. Most satellites experience relatively few encounters but a few satellites are involved in a relatively large number (charts shows data for 7 days from 30 June 2022) [3/n]
Welcome to my (delayed) monthly analysis of @CelesTrak#SOCRATES conjunctions. Since 1 March 2019, SOCRATES has predicted about 9 million unique conjunctions within 5 km involving active or derelict payloads. This is a thread focused on those involving #OneWeb & #Starlink [1/n]
#OneWeb payloads have accounted for ~500,000 unique conjunction predictions since 1 March 2019 (5.5% of all predictions made), while #Starlink payloads have accounted for ~1.1 million (12.5%) [2/n]
On 1 March 2019 #SOCRATES predicted ~3860 unique conjunctions within 5 km. On 30 June 2022 the corresponding number was ~10,160, an increase of ~160%. #Starlink accounted for ~2570 (25%) & #OneWeb accounted for ~1250 (12%) [3/n]
In advance of my monthly analysis of #Starlink conjunction data I wanted to share some additional analysis undertaken over the last few days. It's a work in progress but here's a thread looking a little deeper at the #SpaceX approach to #Starlink orbital space safety [1/n]
My focus has mostly been on understanding the implications relating to the choice of the probability threshold for collision avoidance manoeuvres. With the #SOCRATES#Starlink data now running across nearly 3 years we can gain some insights that may be useful [3/n]
Earlier this week Elon Musk set out his team's expectations for #Starlink satellites over the next 18 months. I thought I would use this month's #SOCRATES analysis to see what the Starlink team should expect in terms of conjunctions & manoeuvres over that period & beyond [1/n]
Before I start, I'd like to offer my thanks to @planet4589 for creating a page on his website with data that enabled me to move forwards with a critical part of the analysis. Thanks also go to @TSKelso for ongoing support and provision of SOCRATES data via @CelesTrak [2/n]
This month we open with the number of conjunctions within 5 km or less predicted for each week from December 2018 to the end of March 2022. Something extraordinary has happened because of #Starlink and the ASAT test in November: a 400% increase in less than 3 years [3/n]
There's a strong focus on the collision avoidance capabilities of the #Starlink satellites rather than on the services that inform those capabilities. Ryan Hiles and co-authors presented a hugely valuable insight on this aspect at @amoscon last year amostech.com/TechnicalPaper…
The impact of #Starlink on the work of @SpaceForceDoD is explained clearly, as are the steps taken to manage the screening burden that has emerged with growing numbers of #Starlink satellites. That burden is continuing to grow (exponentially by my estimates)
Elon Musk told the Financial Times that "Tens of billions" of satellites can be accommodated in orbits close to Earth. Here's a thread looking at whether this is correct... bbc.co.uk/news/business-…
1/ To investigate, I used the stability model developed by Don Kessler & Phillip Anz-Meador, which Phillip presented at the 3rd European Conference on Space Debris in 2001
2/ I will skip over the derivation of the model to go straight to the key result, the
critical number of intact objects above a specified altitude producing a
runaway environment: