1/Sometimes the tiniest thing can be the biggest pain—that’s microvascular compression of the trigeminal nerve! But seeing such a tiny finding can be hard!
2/The most important thing to remember is that the nerve is 3D so you have to look for compression in all 3 planes. Let’s start w/the axial plane. On a normal axial, the trigeminal nerves should look like the arms of an alien sticking out of the pons.
3/Compression in the axial plane usually will deviate the nerve laterally—making it so that the Alien looks like he is flexing one of his arms. So if you see the Alien trying to show his guns—that’s microvascular compression!
4/In the sagittal plane, the nerve looks like an elephant’s trunk coming out of the pons. It should have a smooth curve up and over before it enters Meckel’s cave, just like the way an elephant’s trunk curves.
5/If the trunk is flattened, like it’s balancing ball or is curved downwards—that’s microvascular compression in the sagittal plane. If the nerve is pressed downward, you could miss this in the axial plane—bc the movement is parallel to the axial plane. You need a sagittal view
6/In the coronal plane, the nerves look like two gun barrels pointed at you, by a very potty bellied cowboy that is the pons.
7/If the nerves lose their gun barrel shape, and looks more like a boomerang—in any direction—that is microvascular compression. Coronal is usually the most helpful view, bc you can see movement both up and down and left to right.
8/So now you know what the normal trigeminal nerve looks like in all 3 planes—and you can now check for microvascular compression in three dimensions. Remember, images may be 2D, but life—and pathology—are 3D!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle
@TheAJNR 2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.
It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia
@TheAJNR 3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.
It’s possible to lose little volume from infarct & still result in dementia.
So if infarcts are common—which contribute to vascular dementia?
@TheAJNR 2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots.
In the cervical spine, we have another factor to think about—the cord.
Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either
@TheAJNR 3/Cord flattening, even w/o canal stenosis, can cause myelopathy.
No one is quite sure why.
Some say it’s b/c mass effect on static imaging may be much worse dynamically, some say repetitive microtrauma, & some say micro-ischemia from compression of perforators