Handbook to conduct fraudulent clinical research on repurposed drugs in the context of covid-19, in order to show that they do not bring benefits (updated jan 2023).
⤵️ 1/n
➖Choose the wrong drug dosage, too high (HCQ – Recovery, Solidarity) or too low (IVM - Together) depending on the safety and efficacy of the drug,
2/n
➖Choose the wrong treatment duration (IVM - Together, etc...),
3/n
➖Choose the wrong timing for intervention: start treatment late when your trial aims to study an antiviral (HCQ – Recovery, Solidarity, Discovery),
4/n
➖Modify the inclusion criteria concerning the time between symptoms and recruitment (Principle: 7 days, changed to 14 days),
5/n
➖Do not exclude young patients in good health, it will be difficult to see a difference between the groups (IVM - Lopez-Medina et al.),
6/n
➖Do not exclude patients who took the drug tested in the trial before recruitment, (IVM - Together, Lopez-Medina et al.),
7/n
➖If it is recommended to take the drug with a meal, prescribe it on an empty stomach (IVM: Togtether, Activ6, Bramante et al., Vallejos et al.),
8/n
➖Choose a 'soft' outcome, such as 'resolution of all symptoms after 21 days' (Lopez-Medina et al.),
9/n
➖Do not measure viral load if you are studying a potentially antiviral treatment (IVM: Lopez- Medina et al., Activ6, etc...), measure viral load only when you start treatment AFTER the viral phase (HCQ - Discovery ),
10/n
➖And argue that not seeing a difference in viral load is a sign that the drug is not working,
11/n
➖STOP trials with good protocols if blatant fraud (#lancetgate) is published, but continue trials with bad protocols arguing that everything is fine (HCQ - Recovery),
12/n
➖ Argue that your (well done) study showing a 70% non-statistically significant mortality reduction contradicts a (poor) meta-analysis showing a statistically significant 70% mortality reduction (Lim et al.),
13/n
➖Do not test multi-therapy (remember that it is forbidden to save lives by using more than one drug), but only one drug at a time,
14/n
➖Prescribe a macrolide at 20% of the control group when your trial is testing azithromycin, a macrolide. Don't talk about it in the study, hide it in the supplementary data (Recovery),
15/n
➖Include patients who have already recovered (!) in trials whose primary endpoint is "duration of symptoms" (IVM - activ6),
16/n
➖Give an active placebo (Vitamin C) to the control group, arguing that it is not an active treatment (HCQ - Together),
17/n
➖Overestimate the number of events expected in the control arm, so that the results risk being "not statistically significant" (HCQ: Skipper et al., Boulware et al., IVM: Lopez-Medina et al.),
18/n
➖Fail to correctly take into account the shipping time of drugs in the analysis (PeP-HCQ, Boulware et al.),
19/n
2/ Meta-analyses:
➖All studies satisfying one of the above points are studies at "low risk of bias",
20/n
➖Do not include trials testing multi-therapies (remember that it is forbidden to save lives by using more than one drug),
21/n
➖Download data and do a quick meta-analysis before you register on prospero (Fiolet et al.), make a youtube video and argue that it was only educational,
22/n
➖Include observational studies, until large positive observational studies are published, then STOP doing that! (HCQ),
23/n
➖If results for outpatients and inpatients are different (HCQ), include both in a single metaanalysis to mask positive results (Cochrane: Singh et al.),
24/n
➖On the contrary, if the results for outpatients and inpatients are positive (IVM), separate both in distinct meta-analyses to hide the positive results by decreasing the statistical power (Cochrane: Popp et al.),
25/n
➖Include trials that do not meet your inclusion criteria if they gave negative results (HCQ: Fiolet et al, IVM: Popp et al.),
26/n
➖Assess studies at “low risk of bias” if published in a high impact factor (IF) journal, and all preprints at “high risk of bias”. Oops : high IF journals are only interested in publishing negative studies on repositioned drugs😇,
27/n
➖Trials with positive results are "high risk of bias", because, you know, we know it's impossible...
28/n
➖Choose the wrong statistical model, depending on what you want to show, remember that the fixed effects model will produce a smaller CI (Shankar-Hari et al.)
Argue that it's ok, because you wrote it in the protocol, nananère!!!
29/n
➖If a trial shows a positive result, JUST REVERSE THE TWO GROUPS (Roman et al. preprint) 😉
30/n
➖Create your own imaginary data on the duration of hospitalization of a trial (Roman et al.),
31/n
➖Write a conclusion opposite to what the data show (Hill et al.),
32/n
➖If someone says you made mistakes and if you fix mistakes it changes the result, argue that you find exactly the same results as other published meta-analyses, so it's ok to not fix them (Fiolet et al.),
33/n
➖Create new subjective criteria to exclude studies from the meta-analysis, but do not apply these criteria to other drugs such as paxlovid (Cochrane: Popp et al., Reis et al.),
34/n
➖Modify the protocol of your meta-analysis before the update to mask a reduction in the need for invasive mechanical ventilation by excluding this outcome (IVM: Popp et al.),
35/n
➖Decrease the level of evidence for "imprecision" when the confidence interval is small, in contradiction with the GRADE recommendations (IVM, WHO)
36/36
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Manuel pour mener des recherches cliniques frauduleuses sur des médicaments repositionnés dans le cadre du covid-19, afin de montrer qu'ils n'apportent pas de bénéfices (mise à jour janvier 2023).
⤵️
1/n
1/ Protocoles d'essais randomisés :
➖Choisir le mauvais dosage du médicament, trop élevé (HCQ – Recovery, Solidarity) ou trop faible (IVM - Together) en fonction de la sécurité et de l'efficacité du médicament.
2/n
➖Choisir une mauvaise durée de traitement (IVM - Together, etc...),
3/n
Si t'es à la tête d'une compagnie pharma, tu peux considérer les avantages d'appeler tes produits des 'vaccins':
⤵️
1/n
➖Pas besoin de conduire des études pharmacologiques (pharmacocinétique, bio-distribution, etc...), parce que, you know, c'est un 'vaccin'. Les critiques seront appelés 'antivax'.
2/n
➖Pas besoin d'étude de sécurité sur le long terme, parce que, you know, les 'vaccins' ne posent pas de problème à long terme. Les critiques seront appelés 'antivax'.
3/n
médicament qui ne réduit ni le nombre d'hospitalisations ni le nombre de décès. Est-ce que fournir une information non biaisée au lecteur fait partie de vos bonnes résolutions pour 2023?
2/2
The #Activ6 trial ivermectin 600μg/kg is a scientific fraud. medrxiv.org/content/10.110…
Here is how they justify dosage and duration: "a possible anti-viral activity with increasing dose." citing Krolewiecki et al. study. 1/n
If we look at the protocol of the activ6 trial published as a supplement of the 400μg/kg arm published in the JAMA: jamanetwork.com/journals/jama/…, here is the rationale for selection of dose (600μg/kg). 2/n
Reference 66 is Krolewiecki et al. study. 1rst problem: Krolewiecki study doesn't contain a 300μg/kg as they claim here. What is right is "The anti-viral activity was identified in the subgroup of patients on ivermectin with higher mean plasma concentrations."
3/n
Tout le monde saute sur le dernier préprint de Boulware et cie, le mec qui ne serait pas capable de détecter à l'aveugle une différence entre une pomme et une orange.
1/n
Rappelons donc que cette étude hérite des biais similaires au bras IVM 400μg/kg d'#activ6, même si on aurait pu espérer que la meilleure posologie (dosage et durée) apporte des résultats positifs: 1/ Traitement à jeun.
@SabinehazanMD 27/ Give active (vitamins) placebo in control group, arguing these are not active treatment (together HCQ)
@SabinehazanMD 28/ Overestimate expected number of events in the control arm in order to underpower your trial, so that results are likely to be "not statistically significant" (HCQ: Skipper et al., Boulware et al., IVM: Lopez-Medina et al.)
@SabinehazanMD 29/ Fail to properly account for the shipping time of drugs (PeP-HCQ, Boulware et al.)