Lea Alhilali, MD Profile picture
Jan 10, 2023 19 tweets 9 min read Read on X
1/Talk about twisting your back! Do spine vascular lesions make your brain feel tangled like the dilated vessels you see?

Here’s a #tweetorial on #spine vascular #anatomy & dural arteriovenous fistulas (dAVF)

#medtwitter #meded #FOAMed #neurotwitter #neurosurgery #neurorad Image
2/To understand spinal dural AVFs, you need to understand basic spinal vascular anatomy.

The spine is LONG—to get blood from the top of the cord to the bottom is like going through the length of a marathon course Image
3/So we will need to tackle it like you tackle running a marathon.

When you run a marathon, you replenish yourself at aid/water stations along the way so you can make it all the way through.

Same w/spinal arterial vasculature—it needs to be replenished on the way down. Image
4/The aid stations that replenish the spinal arteries on the way down are the radiculomedullary arteries. They arise from the radicular arteries (radiculo-) and go to the cord (-medullary). They give a boost to the anterior & posterior spinal arteries on their way down the spine Image
5/Initially, in the fetus, the spinal arteries are replenished at every level.

But slowly, some radiculomedullary arteries regress, leaving only the radicular arteries from which they came.

Other hypertrophy to compensate, so there’s only replenishment at certain levels Image
6/It is kind of like training for a marathon.

Early, you need to stop at every water station to replenish.

But as you grow & get stronger, you learn how to get more out of every aid station & you only have to use a few to replenish Image
7/Largest of the radiculomedullary arteries that hypertrophied & remains is called the Artery of Adamkiewcz. It has a classic “hairpin” turn.

Other radiculomedullary arteries also can have such a turn, but Adamkiewcz will be the largest. Remember Adam was important & strong! Image
8/Radicular arteries supplying the radiculomedullary vessels live in the dura of the nerve root sleeve (nerves give you RADICULAR pain--so by the nerves is RADICULAR artery)

Radicular veins are here too, draining this region into the perimedullary venous plexus along the cord Image
9/In addition to giving off branches that supply or drain to the cord, radicular arteries and veins also supply/drain the adjacent pedicle and nerve root in this region Image
10/The fistula forms in the nerve root sleeve. No one knows exactly why. Some think the Glomerulus of Manelfe, which regulates venous pressures here, causes fistulas.

Regardless, increased pressure in the arterialized radicular vein backs up into the perimedullary plexus Image
11/So the dilated vessels you see on MR & angiograms IN THE CANAL, are NOT the fistula

Rather, these are the dilated perimedullary plexus--resulting from high arterial flow in the radicular vein backing up into the perimedullary plexus Image
12/The fistula itself is not in the canal, but in the nerve root sleeve

But it is connected to all of the dilated perimedullary venous plexus vessels in the canal we see on imaging and associate with spinal dural AVFs Image
13/On an MRA for spinal dAVF, you won’t usually see the fistula—it’s too small. But you'll see the dilated, arterialized radicular vein draining into the dilated perimedullary plexus.

So it’s your job to find the level of the dilated radicular vein—b/c that’s the fistula level! Image
14/The fistula causes damage b/c the perimedullary plexus isn’t made to carry arterial volume. It’s like drinking from a slow faucet & then suddenly having it turned on all the way—you’ll choke!

Fistulas cause veins to be overloaded, get wall thickening, & eventually shut down Image
15/Arterialized venous pressure & veins shutting down from overload causes venous congestion in the cord.

Even though the radicular vein itself doesn’t drain the cord, it drains to the perimedullary plexus, which drains the cord

So perimedullary hypertension affects the cord Image
16/It’s like an accident on a freeway exit ramp. Even if you aren’t on the exit ramp, the exit ramp backup eventually backs onto the highway—so even cars not using that exit are affected

Even though the cord doesn’t drain through the radicular vein, the venous backup affects it Image
17/ B/c there is a pressure gradient in the upright position & the cspine has better venous drainage, congestion is most pronounced caudally, even if the fistula is higher.

So you cannot use the location of veins or cord edema to localize the fistula! Image
18/Venous cord congestion causes the classic Foix-Alajounine syndrome. Venous hypertension from the fistula causes veins to overload & shut down. This causes more HTN & more shutdown.

This feed forward loop causes slowly greater venous cord edema & slowly progressive myelopathy Image
19/So now you understand the anatomy and pathology behind spinal dural arteriovenous fistulas!

Hopefully, this tweetorial didn’t overload you & cause some information hypertension! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Aug 1
1/They say form follows function!

Brain MRI anatomy is best understood in terms of both form & function.

Here’s a short thread to help you to remember important functional brain anatomy--so you truly can clinically correlate! Image
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex. Image
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG) Image
Read 12 tweets
Jul 29
1/Talk about bad blood!

Do you know when a hematoma is going to expand?

Read on for month’s @theAJNR SCANtastic on all you need to know about imaging intracranial hemorrhage!

ajnr.org/content/46/7/1…Image
@TheAJNR 2/Everyone knows about the spot sign for intracranial hemorrhage

It’s when arterial contrast is seen within a hematoma on CTA, indicating active
extravasation of contrast into the hematoma.

But what if you want to know before the CTA? Image
@TheAJNR 3/Turns out there are non-contrast head CT signs that a hematoma may expand that perform similarly to the spot sign—and together can be very accurate.

How can you remember what they are? Image
Read 9 tweets
Jul 25
1/Time to go with the flow!

Hoping no one notices you don’t know the anatomy of internal carotid (ICA)?

Do you say “carotid siphon” & hope no one asks for more detail?

Here’s a thread to help you siphon off some information about ICA anatomy! Image
2/ICA is like a staircase—winding up through important anatomic regions like a staircase winding up to each floor Lobby is the neck.

First floor is skullbase/carotid canal. Next it stops at the cavernous sinus, before finally reaching the rooftop balcony of the intradural space.Image
3/ICA is divided into numbered segments based on landmarks that denote transitions on its way up the floors.

C1 is in the lobby or neck.

You can remember this b/c the number 1 looks elongated & straight like a neck. Image
Read 10 tweets
Jul 23
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Jul 21
1/Do you know all the aspects of, well, ASPECTS?

Many know the anterior circulation stroke scoring system—but posterior circulation (pc) ASPECTS is often left behind

25% of infarcts are posterior circulation

Do you know pc-ASPECTS?!

Here’s how to remember pc-ASPECTS! Image
2/Many know anterior circulation ASPECTS.

It uses a 10-point scoring system to semi-quantitation the amount of the MCA territory infarcted on non-contrast head CT

If you need a review: here’s my thread on ASPECTS: Image
3/But it’s only useful for the anterior circulation.

Posterior circulation accounts for ~25% of infarcts.

Even w/recanalization, many of these pts do poorly bc of the extent of already infarcted tissue.

So there’s a need to quantitate the amount of infarcted tissue in these ptsImage
Read 12 tweets
Jul 2
1/The medulla is anything but DULL!

Does seeing an infarct in the medulla cause your heart to skip a beat?

Does medullary anatomy send you into respiratory arrest?

Never fear, here is a thread on the major medullary syndromes! Image
2/The medulla is like a toll road.

Everything going down into the cord must pass through the medulla & everything from the cord going back up to the brain must too.

That’s a lot of tracts for a very small territory. Luckily you don’t need to know every tract Image
3/Medulla has 4 main vascular territories, spread out like a fan: anteromedial, anterolateral, lateral, and posterior.

You don’t need to remember their names, just the territory they cover—and I’ll show you how Image
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(