I think the vascular territories look a butterfly—w/the ACA as the head/body, PCA as the butt/tail, and MCA territories spreading out like a butterfly wings.
3/Of course, it’s more complicated than that.
Medially, there are also small vessel territories—the lenticulostriates & anterior choroidal.
I think they look like little legs, coming out from between the ACA body & PCA tail.
4/Brain arterial system is like a road system transporting blood/oxygen to all over the brain via different sized roads.
Large vessels are the interstates, branch vessels are state highways, & perforators are county roads. But they are interconnected—just like a road system
5/When trying to remember the etiologies of stroke, it's helpful to think of the arteries like a road system
The same road problems that keep traffic from getting to their destination are analogous to the problems that keep blood from reaching where it needs to go in the brain
6/The first stroke etiology is thromboembolism. This occurs when a vulnerable plaque ruptures & causes local platelet aggregation & clot formation. This occludes the artery and prevents distal blood flow
7/Rupture of the plaque is like a multicar accident that completely blocks the road. Nothing can past the giant pile up—just like nothing can get past the clot formation at the site of plaque rupture
8/If this happens on a highway—& there is no other road serving that area, then no one can reach that whole territory
This is the way it is for northern Arizona & the I 17—if it is blocked, no one is getting to Flagstaff in the north. Thromboembolism causes territorial infarcts
9/Next etiology is embolism.
Emboli can come either from a plaque that ruptures or breaks—but instead of occluding the artery, it spits out emboli downstream.
Alternatively, it can come from the heart, from stasis (Afib, CHF) or vegetations
10/I think of emboli as trouble from out of town. Thrombus from elsewhere invading an innocent artery.
It’s like motorcycle biker gangs from out of town—coming in & disrupting traffic in an innocent city
11/So where do emboli go?
Like biker gangs, emboli go wherever they want. If they end up in large vessels, you get a territorial infarct, or they can block smaller vessels & give smaller infarcts.
They can even give you just one tiny infarct if you catch it soon enough
12/Next etiology is distal hypoperfusion. This is where the plaque is not so large that it occludes the vessel entirely, but large enough that it attenuates the flow distally—and tissue distal to the stenosis does not get enough blood as a result
13/Hypoperfusion is like bad traffic.
You can get through, but waste so much gas sitting in traffic that you end up having to stop before your final destination.
As a result, no one gets to the distal cities on the highway—and certainly not all the way to the BORDER.
14/These are called BORDERZONE infarcts, as blood flow runs out like gas & doesn’t make it to the distal borders between the territories
How to remember the borders? They’re the border between the butterfly parts. So picture the butterfly & you’ll always remember the borderzones
15/A common borderzone infarct is between the butterfly body (ACA) & wing (MCA). This borderzone infarct commonly has several small infarcts along the border.
It is sometimes called the string of pearl signs, b/c this row of small round infarcts looks like a string of pearls
16/I remember that a string of pearls is worn around the NECK.
So if I see a string of pearls on diffusion imaging, I immediately check the NECK, b/c this border zone infarct is commonly from a carotid stenosis in the neck
17/Next etiology is impingement on perforators. This is when the plaque in a large vessel covers up the opening of a small perforator emerging from its wall. This obstructs flow to the perforator
18/This is like when traffic is bad on the highway & blocks your exit. There’s no traffic on your exit—but you just can’t get to it b/c of traffic on the main highway.
There’s nothing more frustrating than seeing no traffic on your home exit—but being unable to reach it
19/These perforator infarcts usually result in subcortical infarcts.
I remember this b/c a single exit is being blocked. Like your exit to the street leading to your neighborhood or SUBDIVISION.
SUBdivision block means SUBcortical infarct.
20/Next etiology is vasculitis.
Vasculitis is an inflammatory condition of the vessel wall, that could be idiopathic, autoimmune, or infectious.
Regardless of the reason, the inflammation leads to vessel wall damage, stenosis, & focal occlusions or thrombosis
21/Vasculitis is like poor road conditions. It is like having potholes everywhere. These potholes cause car accidents wherever they may appear & result in traffic back up.
22/Usually potholes are on smaller roads—b/c the government always takes care to make sure highways are maintained first, so they’re usually less like to have potholes than smaller streets. Similarly, infarcts are usually from smaller rather than larger vessels in vasculitis
23/Last, but certainly not least, is small vessel disease.
This is a kind of wastebasket that encompasses many different pathologies that all have in common that they cause damage to & occlusion of small, unnamed vessels in the brain
24/You can remember this bc unnamed vessels are like the unnamed country roads that go to places larger roads don’t go to
These are usually dirt roads, so they’re very vulnerable to slow traffic, potholes, mud, etc
They are tiny, so their infarcts are usually tiny as well
25/So now you understand the different etiologies of stroke & how different etiologies have different distributions on MRI.
Remember, catching the stroke on the diffusion imaging isn’t the end of your job—it’s the beginning!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
2/Aneurysm rupture is a devastating even, as it results in subarachnoid hemorrhage & complications such as hydrocephalus, vasospasm, infarcts, & death.
Preventing it by treating aneurysms before they rupture is key. But you also don’t want to overtreat.
3/To remember what features make an aneurysm more likely to rupture, think what makes that guy at the bar that you angered more likely to rupture & start a fight.
What makes him more likely to rupture are the same things that make aneurysms more likely to rupture
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle
1/Asking “How old are you?” can be dicey—both in real life & on MRI! Do you know how to tell the age of blood on MRI?
Here’s a thread on how to date blood on MRI so that the next time you see a hemorrhage, your guess on when it happened will always be in the right vein!
2/If you ask someone how to date blood on MRI, they’ll spit out a crazy mnemonic about babies that tells you what signal blood should be on T1 & T2 imaging by age.
But mnemonics are crutch—they help you memorize, but not understand. If you understand, you don’t need to memorize
3/If you look at the mnemonic, you will notice one thing—the T1 signal is all you need to tell if blood is acute, subacute or chronic.
T2 signal will tell if it is early or late in each of those time periods—but that type of detail isn’t needed in real life
1/Do radiologists sound like they are speaking a different language when they talk about MRI?
T1 shortening what? T2 prolongation who?
Here’s a translation w/an introductory thread to MRI.
2/Let’s start w/T1—it is #1 after all! T1 is for anatomy
Since it’s anatomic, brain structures will reflect the same color as real life
So gray matter is gray on T1 & white matter is white on T1
So if you see an image where gray is gray & white is white—you know it’s a T1
3/T1 is also for contrast
Contrast material helps us to see masses
Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see.