Lea Alhilali, MD Profile picture
Feb 13, 2023 12 tweets 6 min read Read on X
1/Do you know all the aspects of, well, ASPECTS?

Many know the anterior circulation #stroke scoring system—but posterior circulation (pc) ASPECTS is often unknown

Here’s a #tweetorial to help you remember pc-ASPECTS
#medtwitter #neurotwitter #meded #neurorad #neurology #FOAMed Image
2/Many know anterior circulation ASPECTS. It uses a 10 point scoring system to semi-quantitate the amount of the MCA territory infarcted on non-contrast head CT.

If you need a review: here’s my tweetorial on ASPECTS: Image
3/But it’s only useful for the anterior circulation. Posterior circulation accounts for ~25% of infarcts. Even w/recanalization, many of these pts do poorly bc of the extent of already infarcted tissue. So there’s a need to quantitate the amount of infarcted tissue in these pts Image
4/Posterior circulation ASPECTS, or pc-ASPECTS for short, is also a 10 point system—but for the vertebrobasilar circulation. Patients get points for each region NOT infarcted on the initial CT. Image
5/Similar to anterior ASPECTS, points are GOOD

It’s like a city—when a region infarcts, it is like the lights go out in that city region (literally, tissue darkens on CT)

In ant & post ASPECTS, you are counting the regions where the lights are still on—so high ASPECTS is good Image
6/Which regions get scored?

The biggest prognostic factors in posterior strokes are time & amount of already infarcted tissue.

So my mnemonic to remember pc-ASPECTS regions is:

Time & Mortal Brain decide Posterior Circulation Outcomes
(mortal brain= infarcted brain) Image
7/How do you assign points?

It’s a little different than anterior ASPECTS, where every region just got one point

For pc-ASPECTS, think of it like a mother. She only has 2 arms. So if there are two kids, they have to split the arms—only one arm can be wrapped around each kid Image
8/So unpaired structures, like the brainstem, are like having only one kid—you get both arms wrapped around you = 2 arms = 2 points.

If the structures are paired, like the cerebellum, it’s like having two kids--they must split the arms. Each gets only 1 arm = 1 point Image
9/So lets go through our regions using the mnemonic.

Each thalmus is worth only 1 point, bc they’re paired & have to share their mother’s arms.

The unpaired midbrain is worth 2 points (gets both arms) Image
10/Pons is unpaired, so it is worth 2 points.

But the paired cerebellar hemispheres & occipital cortex are each only worth 1 point per side, as each side claims only one of the mother’s arms Image
11/While there’s evidence that higher pc-ASPECTS means poorer outcome, there’s no consensus about what pc-ASPECTS score definitively confers a UFO (unfavorable outcome).

But the consensus about what confers a UFO in anterior circulation ASPECTS may change soon as well! Image
12/So now you know the regions & scoring for pc-ASPECTS!

Remember, the anterior circulation isn’t the only aspect of ASPECTS! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Oct 17
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Oct 15
1/”That’s a ninja turtle looking at me!” I exclaimed. My fellow rolled his eyes at me, “Why do I feel I’m going to see this a thread on this soon…”

He was right! A thread about one of my favorite imaging findings & pathology behind it Image
2/Now the ninja turtle isn’t an actual sign—yet!

But I am hoping to make it go viral as one. To understand what this ninja turtle is, you have to know the anatomy.

I have always thought the medulla looks like a 3 leaf clover in this region.

The most medial bump of the clover is the medullary pyramid (motor fibers).

Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.

Now you can see that the ninja turtle eyes correspond to the ION.Image
3/But why are IONs large & bright in our ninja turtle?

This is hypertrophic olivary degeneration.

It is how ION degenerates when input to it is disrupted. Input to ION comes from a circuit called the triangle of Guillain & Mollaret—which sounds like a fine French wine label! Image
Read 9 tweets
Oct 13
1/Time to FESS up! Do you understand functional endoscopic sinus surgery (FESS)?

If you read sinus CTs, you better know what the surgeon is doing or you won’t know what you’re doing!

Here’s a thread to make sure you always make the important findings! Image
2/The first step is to insert the endoscope into the nasal cavity.

The first two structures encountered are the nasal septum and the inferior turbinate. Image
3/So on every sinus CT you read, the first question is whether there is enough room to insert the scope.

Will it go in smoothly or will it be a tight fit? Image
Read 19 tweets
Oct 10
1/I always say you can tell a bad read on a spine MR if it doesn’t talk about lateral recesses.

What will I think when I see your read? Do you rate lateral recess stenosis?

Here’s a thread on lateral recess anatomy & a grading system for lateral recess stenosis Image
2/First anatomy.

Thecal sac is like a highway, carrying the nerve roots down the lumbar spine.

Lateral recess is part of the lateral lumbar canal, which is essentially the exit for spinal nerve roots to get off the thecal sac highway & head out into the rest of the body Image
3/Exits have 3 main parts.

First is the deceleration lane, where the car slows down as it starts the process of exiting.

Then there is the off ramp itself, and this leads into the service road which takes the car to the roads that it needs to get to its destination Image
Read 21 tweets
Oct 8
1/Remembering spinal fracture classifications is back breaking work!

A thread to review the scoring system for thoracic & lumbar fractures—“TLICS” to the cool kids! Image
2/TLICS scores a fx on (1) morphology & (2) posterior ligamentous complex injury

Let's start w/morphology

TLICS scores severity like the steps to make & eat a pizza:

Mild compression (kneading), strong compression (rolling), rotation (tossing), & distraction (tearing in) Image
3/At the most mild, w/only mild axial loading, you get the simplest fx, a compression fx—like a simple long bone fx--worth 1 pt.

This is like when you just start to kneading the dough. There's pressure, but not as much as with a rolling pin! Image
Read 13 tweets
Oct 6
1/Does PTERYGOPALATINE FOSSA anatomy feel as confusing as its spelling?

Does it seem to have as many openings as letters in its name?

Are you pterrified of the pterygopalatine fossa (PPF)?

Let this thread on PPF anatomy help you out. Image
2/The PPF is a crossroads between the skullbase & the extracranial head and neck

There are 4 main regions that meet here:

(1) Skullbase itself posteriorly, (2) nasal cavity medially, (3) infratemporal fossa laterally, and (4) orbit anteriorly. Image
3/At its most basic, you can think of the PPF as a room with 4 doors opening to each of these regions: one posteriorly to the skullbase, one medially to the nasal cavity, one laterally to the infratemporal fossa, and one anteriorly to the orbit Image
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(