2/Many know anterior circulation ASPECTS. It uses a 10 point scoring system to semi-quantitate the amount of the MCA territory infarcted on non-contrast head CT.
If you need a review: here’s my tweetorial on ASPECTS:
3/But it’s only useful for the anterior circulation. Posterior circulation accounts for ~25% of infarcts. Even w/recanalization, many of these pts do poorly bc of the extent of already infarcted tissue. So there’s a need to quantitate the amount of infarcted tissue in these pts
4/Posterior circulation ASPECTS, or pc-ASPECTS for short, is also a 10 point system—but for the vertebrobasilar circulation. Patients get points for each region NOT infarcted on the initial CT.
5/Similar to anterior ASPECTS, points are GOOD
It’s like a city—when a region infarcts, it is like the lights go out in that city region (literally, tissue darkens on CT)
In ant & post ASPECTS, you are counting the regions where the lights are still on—so high ASPECTS is good
6/Which regions get scored?
The biggest prognostic factors in posterior strokes are time & amount of already infarcted tissue.
It’s a little different than anterior ASPECTS, where every region just got one point
For pc-ASPECTS, think of it like a mother. She only has 2 arms. So if there are two kids, they have to split the arms—only one arm can be wrapped around each kid
8/So unpaired structures, like the brainstem, are like having only one kid—you get both arms wrapped around you = 2 arms = 2 points.
If the structures are paired, like the cerebellum, it’s like having two kids--they must split the arms. Each gets only 1 arm = 1 point
9/So lets go through our regions using the mnemonic.
Each thalmus is worth only 1 point, bc they’re paired & have to share their mother’s arms.
The unpaired midbrain is worth 2 points (gets both arms)
10/Pons is unpaired, so it is worth 2 points.
But the paired cerebellar hemispheres & occipital cortex are each only worth 1 point per side, as each side claims only one of the mother’s arms
11/While there’s evidence that higher pc-ASPECTS means poorer outcome, there’s no consensus about what pc-ASPECTS score definitively confers a UFO (unfavorable outcome).
But the consensus about what confers a UFO in anterior circulation ASPECTS may change soon as well!
12/So now you know the regions & scoring for pc-ASPECTS!
Remember, the anterior circulation isn’t the only aspect of ASPECTS!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
If you don’t know the time of stroke onset, are you able to deduce it from imaging?
Here’s a thread to help you date a stroke on MRI!
2/Strokes evolve, or grow old, the same way people evolve or grow old.
The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person
So 15 day old stroke has features of a 15 year old person, etc.
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI).
You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted. So early/newly born stroke is like a baby, only restricted
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.
Do you become paralyzed when you see cord signal abnormality?
Never fear—here is a thread on all the incomplete spinal cord syndromes to get you moving again!
2/Spinal cord anatomy can be complex. On imaging, we can see the ant & post nerve roots. We can also see the gray & white matter. Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin.
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts. Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor
1/Do you get a Broca’s aphasia trying remember the location of Broca's area?
Does trying to remember inferior frontal gyrus anatomy leave you speechless?
Don't be at a loss for words when it comes to Broca's area
Here’s a 🧵to help you remember the anatomy of this key region!
2/Anatomy of the inferior frontal gyrus (IFG) is best seen on the sagittal images, where it looks like the McDonald’s arches.
So, to find this area on MR, I open the sagittal images & scroll until I see the arches. When it comes to this method of finding the IFG, i’m lovin it.
3/Inferior frontal gyrus also looks like a sideways 3, if you prefer. This 3 is helpful bc the inferior frontal gyrus has 3 parts—called pars
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle