Lea Alhilali, MD Profile picture
Mar 6, 2023 21 tweets 9 min read Read on X
1/I always say you can tell a bad read on a spine MR if it doesn’t talk about the lateral recess

What will I think when I see your read? What do you say about lateral recesses?

Here’s a #tweetorial on lateral recess #anatomy & grading stenosis
#medtwitter #neurorad #spine
2/First anatomy.

Thecal sac is like a highway, carrying the nerve roots down the lumbar spine.

Lateral recess is part of the lateral lumbar canal, which is essentially the exit for spinal nerve roots to get off the thecal sac highway & head out into the rest of the body
3/Exits have 3 main parts.

First is the deceleration lane, where the car slows down as it starts the process of exiting.

Then there is the off ramp itself.

The off ramp leads into the service road, which takes the car to the roads that it needs to get to its destination
4/Lateral canal also has 3 parts like the parts of a freeway exit

Entrance to the lateral canal is like a deceleration lane & is called the entrance zone

Next is the middle zone, acts like an off ramp

Finally, is the exit zone, which is like the service road along the side
5/The deceleration lane/entrance zone is called the “lateral recess” or “subarticular recess”

It's right behind the superior articular process (SAP) of the facet

On axial images, it is the lateral most part of the canal, right behind the vertebral body & anterior to the facet
6/Deceleration lane leads to the exit ramp, which is the middle or foraminal zone

This is the portion that goes down under the pedicle, just like exit ramps often go down after exiting the highway

On axials, this is the region just lateral to the thecal sac, under the pedicle
7/Finally is the exit or extraforaminal zone. It's the portion after the pedicle, running over the SAP of the lower vertebra

Like a service road, it is the last part of the exit before the nerve heads out towards its road that leads to its final destination in the body
8/Now getting through this lateral canal is like an obstacle course for the nerve root!

First, the subarticular recess is located between the superior articular process & disc. These form a tunnel that the nerve root must pass through. It needs enough room in the tunnel to fit
9/Next, it needs pass under the pedicle like someone doing limbo under a pole.

It needs the pole/pedicle to be high enough so it can pass under it & fit.
10/Finally, passing over the superior articular process of the lower lumbar vertebra is like riding down a slide—anything bumps that get in the way will make it difficult or painful to get down
11/So here is the obstacle course of the lateral lumbar canal:

First, you must pass through the subarticular recess/lateral recess tunnel, next limbo under the pedicle in the foraminal region, & finally slide down the superior articular process of the lower lumbar vertebra.
12/And there can be trouble along the way.

Let’s start in the subarticular/lateral recess.

This tunnel is commonly narrowed by osteophytes off of the superior articular process or even the disc

This can make the tunnel too narrow & the nerve root will be compressed!
13/In the foraminal zone, the limbo bar of the pedicle is often lowered by decreased disc height, making it hard for the nerve root to pass under.

Herniations & osteophytes here can lower the bar or raise the floor so that it is impossible for the nerve root to limbo under
14/Finally, in the exit or extraforaminal zone, the slide down the superior articular process can be bumpy from osteophytes from the superior articular process itself.

It's like trying to go down a slide & finding a big boulder in the middle—you’ll hit it & it will hurt!
15/So how do we grade lateral/subarticular recess narrowing?

Normally the nerve root sits in the subarticular recess like a pea in a pod. Just the right amount of space or CSF surrounds it.
16/However, these peas sit precariously positioned between the disc & superior articular process, like a pea pod between a pincer grasp.

And like a pincer grasp, the disc & superior articular process can begin to squeeze down on the nerve in the subarticular/lateral recess
17/Splettstober et al. came up with a rating system to describe the degree of squeeze. Grade 0 is no squeeze. No impingement on the lateral recess. Happy pea in a pod
18/Grade 1 or MILD narrowing is when you start to squeeze it just a tiny bit.

This means the space around the peas narrow, but the peas themselves aren’t compressed or moved.

The CSF in the subarticular/lateral recess is attenuated, but nerve root is not impinged
19/Grade 2 or MODERATE narrowing is when you squeeze even harder. Bc of the increased pressure, the peas begin to move more medially in the pod

Grade 2 is when you have medialization of the nerve root bc there isn’t enough room for it in the lateral recess bc of the narrowing
20/Grade 3 or SEVERE narrowing is when you really pinch down & crush the peas.

Here, the nerve root itself is compressed—it can’t even go medial to escape.

This rating system has been found to correlate with symptoms/radiculopathy referrable to the lateral recess
21/So now you know the anatomy of the lateral lumbar canal, its lateral/subarticular recess, and how to rate the narrowing in this region.

I know now that when I see one of your reads, I will be sure to be impressed!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Aug 1
1/They say form follows function!

Brain MRI anatomy is best understood in terms of both form & function.

Here’s a short thread to help you to remember important functional brain anatomy--so you truly can clinically correlate! Image
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex. Image
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG) Image
Read 12 tweets
Jul 29
1/Talk about bad blood!

Do you know when a hematoma is going to expand?

Read on for month’s @theAJNR SCANtastic on all you need to know about imaging intracranial hemorrhage!

ajnr.org/content/46/7/1…Image
@TheAJNR 2/Everyone knows about the spot sign for intracranial hemorrhage

It’s when arterial contrast is seen within a hematoma on CTA, indicating active
extravasation of contrast into the hematoma.

But what if you want to know before the CTA? Image
@TheAJNR 3/Turns out there are non-contrast head CT signs that a hematoma may expand that perform similarly to the spot sign—and together can be very accurate.

How can you remember what they are? Image
Read 9 tweets
Jul 25
1/Time to go with the flow!

Hoping no one notices you don’t know the anatomy of internal carotid (ICA)?

Do you say “carotid siphon” & hope no one asks for more detail?

Here’s a thread to help you siphon off some information about ICA anatomy! Image
2/ICA is like a staircase—winding up through important anatomic regions like a staircase winding up to each floor Lobby is the neck.

First floor is skullbase/carotid canal. Next it stops at the cavernous sinus, before finally reaching the rooftop balcony of the intradural space.Image
3/ICA is divided into numbered segments based on landmarks that denote transitions on its way up the floors.

C1 is in the lobby or neck.

You can remember this b/c the number 1 looks elongated & straight like a neck. Image
Read 10 tweets
Jul 23
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Jul 21
1/Do you know all the aspects of, well, ASPECTS?

Many know the anterior circulation stroke scoring system—but posterior circulation (pc) ASPECTS is often left behind

25% of infarcts are posterior circulation

Do you know pc-ASPECTS?!

Here’s how to remember pc-ASPECTS! Image
2/Many know anterior circulation ASPECTS.

It uses a 10-point scoring system to semi-quantitation the amount of the MCA territory infarcted on non-contrast head CT

If you need a review: here’s my thread on ASPECTS: Image
3/But it’s only useful for the anterior circulation.

Posterior circulation accounts for ~25% of infarcts.

Even w/recanalization, many of these pts do poorly bc of the extent of already infarcted tissue.

So there’s a need to quantitate the amount of infarcted tissue in these ptsImage
Read 12 tweets
Jul 2
1/The medulla is anything but DULL!

Does seeing an infarct in the medulla cause your heart to skip a beat?

Does medullary anatomy send you into respiratory arrest?

Never fear, here is a thread on the major medullary syndromes! Image
2/The medulla is like a toll road.

Everything going down into the cord must pass through the medulla & everything from the cord going back up to the brain must too.

That’s a lot of tracts for a very small territory. Luckily you don’t need to know every tract Image
3/Medulla has 4 main vascular territories, spread out like a fan: anteromedial, anterolateral, lateral, and posterior.

You don’t need to remember their names, just the territory they cover—and I’ll show you how Image
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(